Facile Preparation of Crosslinked PAN Membranes Based on Thiol-Ene Photopolymerization.

Polymers (Basel)

College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

Published: August 2017

To improve the mechanical strength and antipollution properties of membranes, this research presents a facile method to prepare crosslinked polyacrylonitrile (PAN) membranes. This was achieved firstly by radical copolymerization with acrylonitrile, allyl methacrylate and sulfobetaine methacrylamide. Then, the copolymer was crosslinked by a thiol-ene click reaction under UV irradiation. Finally, the crosslinked membranes were prepared by traditional immersion precipitation phase inversion. These prepared membranes showed excellent water-pressure resistance and solvent swelling, owing to their crosslinked structure. This research will help in preparing crosslinked membranes through facile crosslinking under mild reaction conditions. The betaine structure also considerably improved the antifouling properties of the membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418776PMC
http://dx.doi.org/10.3390/polym9090390DOI Listing

Publication Analysis

Top Keywords

pan membranes
8
properties membranes
8
crosslinked membranes
8
membranes
7
crosslinked
6
facile preparation
4
preparation crosslinked
4
crosslinked pan
4
membranes based
4
based thiol-ene
4

Similar Publications

Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.

View Article and Find Full Text PDF

ST8SIA6 Sialylates CD24 to Enhance Its Membrane Localization in BRCA.

Cells

December 2024

Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

CD24, a highly sialylated glycosyl-phosphatidyl-inositol (GPI) cell surface protein that interacts with sialic acid-binding immunoglobulin-like lectins (Siglecs), serves as an innate immune checkpoint and plays a crucial role in inflammatory diseases and tumor progression. Recently, cytoplasmic CD24 has been observed in samples from patients with cancer. However, whether sialylation governs the subcellular localization of CD24 in cancer remains unclear, and the impact of CD24 expression and localization on the clinical prognosis of cancer remains controversial.

View Article and Find Full Text PDF

Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.

View Article and Find Full Text PDF

The influence of temperature induced changes in the composition of MFGM on membrane phase transition and nanomechanical properties.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China. Electronic address:

Biomimetic membrane was investigated as model systems to mimic the structure of milk fat globule membrane (MFGM) and to study the effects of thermal processing-induced changes in MFGM fractions on membrane morphology and physical properties. Molecular docking was utilized to screen xanthine oxidase (XO) as the MFGM protein most likely to bind to phospholipid molecules on MFGM. Fluorescence spectroscopy verified that XO formed stable complexes with DOPE, DPPC, and PS 18:0-18:1, with the strongest binding to DOPE.

View Article and Find Full Text PDF

The impact of seasonal short-term drought on plant physiology and resilience is crucial for conservation and management strategies. This study investigated drought stress effects on growth, photosynthetic capacity, and physiological responses of Camphor (Cinnamomum camphora) seedlings in Guangxi province, China. Fertilized potted plants underwent continuous drought treatments to assess varying water supply effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!