Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide.

Polymers (Basel)

I.U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain.

Published: August 2017

In this work, we present a method of manufacturing an optical see-through display based on a holographic waveguide with transmission holograms that couple the incident light between air and the glass substrate, accomplishing total internal reflection. The holograms (slanted transmission gratings with a spatial frequency of 1700 lines/mm) were recorded on a polyvinyl alcohol acrylamide (PVA/AA) photopolymer. We will also show that the addition of ,'-methylene-bis-acrylamide (BMA) to the composition of the photopolymer allows the achievement of the index modulations necessary to obtain high diffraction efficiencies in non-slanted diffraction gratings of 1000 and 2200 lines/mm, and also in slanted gratings of 1700 lines/mm (which are the base of the optical system proposed).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418691PMC
http://dx.doi.org/10.3390/polym9090395DOI Listing

Publication Analysis

Top Keywords

holographic waveguide
8
1700 lines/mm
8
optimization photopolymer
4
photopolymer materials
4
materials fabrication
4
fabrication holographic
4
waveguide work
4
work method
4
method manufacturing
4
manufacturing optical
4

Similar Publications

The holographic technique is one of the simplest methods for designing antennas based on metasurface. This paper presents a spoof surface plasmon polariton (SSPP) leaky-wave antenna (LWA) based on the concept of impedance modulated metasurfaces by the anisotropic holographic technique. Instead of parasitic elements, anisotropic SSPP elements are exploited to achieve radiation with circular polarization.

View Article and Find Full Text PDF

Metasurface holograms offer various advantages, including wide viewing angle, small volume, and high resolution. However, full-color animation of high-resolution images has been a challenging issue. In this study, a full-color dielectric metasurface holographic movie with a resolution of 2322 × 2322 was achieved by spatiotemporally multiplexing 30 frames with blue, green, and red color channels at the wavelengths of 445 nm, 532 nm, and 633 nm at the maximum reconstruction speed of 55.

View Article and Find Full Text PDF

In this Letter, a reconfigurable holographic polymer dispersed liquid crystal (HPDLC) grating template is presented that is obtained by removing the liquid crystal from a formed HPDLC grating. The diffraction characteristics of the HPDLC grating template are studied theoretically and experimentally. Compared to the typical HPDLC grating, the HPDLC grating template possesses higher diffraction efficiency with lower polarization dependency.

View Article and Find Full Text PDF

Grating couplers are widely used in integrated optics to generate free-space beams and facilitate localized interactions with systems such as atom or ion traps. However, etched devices often exhibit small-scale inconsistencies; exacerbated by the high index contrast of the devices, this can lead to phase errors, limiting devices to a sub-millimeter scale. Here we present the first demonstration, to our knowledge, of tilted, out-of-plane blazed gratings in planar silica fabricated by UV inscription using a 213 nm laser.

View Article and Find Full Text PDF

In this paper, we present and design a tensor holographic metasurface (THMS) capable of radiating multiple beams with different polarizations in both forward and backward directions. The proposed THMS manipulates the fundamental TE mode surface waves (SWs) to produce bidirectional leaky-wave radiation using bilayer anisotropic metal patches. To achieve the independent control of the direction and polarization of bidirectional beams, the nature of the capacitive impedance element supporting TE mode SWs is exploited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!