Hydroxyapatite-based biomaterials are commonly used in surgery to repair bone damage. However, the introduction of biomaterials into the body can cause metabolic alterations, including redox imbalance. Because vitamins D3 and K (K1, MK-4, MK-7) have pronounced osteoinductive, anti-inflammatory, and antioxidant properties, it is suggested that they may reduce the adverse effects of biomaterials. The aim of this study was to investigate the effects of vitamins D3 and K, used alone and in combination, on the redox metabolism of human osteoblasts (hFOB 1.19 cell line) cultured in the presence of hydroxyapatite-based biomaterials (Maxgraft, Cerabone, Apatos, and Gen-Os). Culturing of the osteoblasts in the presence of hydroxyapatite-based biomaterials resulted in oxidative stress manifested by increased production of reactive oxygen species and decrease of glutathione level and glutathione peroxidase activity. Such redox imbalance leads to lipid peroxidation manifested by an increase of 4-hydroxynonenal level, which is known to influence the growth of bone cells. Vitamins D3 and K were shown to help maintain redox balance and prevent lipid peroxidation in osteoblasts cultured with hydroxyapatite-based biomaterials. The strongest effect was observed for the combination of vitamin D3 and MK-7. Moreover, vitamins promoted growth of the osteoblasts, manifested by increased DNA biosynthesis. Therefore, it is suggested that the use of vitamins D3 and K may protect redox balance and support the growth of osteoblasts affected by hydroxyapatite-based biomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523281 | PMC |
http://dx.doi.org/10.3390/cells8040325 | DOI Listing |
Sci Rep
November 2024
Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
Hydroxyapatite (HA) granules are frequently used in orthopedics and maxillofacial surgeries to fill bone defects and stimulate the regeneration process. Optimal HA granules should have high biocompatibility, high microporosity and/or mesoporosity, and high specific surface area (SSA), which are essential for their bioabsorbability, high bioactivity (ability to form apatite layer on their surfaces) and good osseointegration with the host tissue. Commercially available HA granules that are sintered at high temperatures (≥ 900 °C) are biocompatible but show low porosity and SSA (2-5 m/g), reduced bioactivity, poor solubility and thereby, low bioabsorbability.
View Article and Find Full Text PDFSci Rep
November 2024
Central Metallurgical Research and Development Institute (CMRDI), PO Box 87, Helwan, Cairo, 11421, Egypt.
J Dent
December 2024
Faculty of Dentistry, University of Toronto, Toronto, Canada.
Objectives: A systematic review and meta-analysis were undertaken to update our 3-year-old meta-analysis to include RCTs, in vivo, and in situ clinical evidence that showed hydroxyapatite in oral care products can reduce dental caries.
Data: Using the PICO guide, published clinical trials were searched where subjects (P) of all ages, with primary, mixed or permanent dentitions, using toothpastes, mouthwashes or gels containing hydroxyapatite as an active ingredient (I) were compared to subjects who used placebo or no intervention, or fluoride-containing positive controls (C), and the outcomes (O) were direct measurement of reduced dental caries or suitable proxy for reduced caries risk.
Sources: PubMed, Scopus, EMBASE, and Web of Science databases were searched using search terms from previous searches.
ACS Infect Dis
November 2024
Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India.
Discov Nano
October 2024
Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang University ERICA Campus, Ansan, 11558, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!