Background: Animal studies suggest that total parenteral nutrition (TPN) may alter bacterial colonization of the intestinal tract and contribute to complications. Progressive changes in gut microbiome of infants receiving TPN are not well understood.

Methods: Infants with and without TPN/soy lipid were enrolled in a prospective, longitudinal study. Weekly fecal samples were obtained for the first 4 weeks of life. High throughput pyrosequencing of 16S rDNA was used for compositional analysis of the gut microbiome.

Results: 47 infants were eligible for analyses, 25 infants received TPN, and 22 infants did not (control). Although similar between TPN and control groups in the first week, fecal bacterial alpha diversity was significantly lower in the TPN group compared to controls at week 4 (Shannon index 1.0 vs 1.5, P-value = 0.03). The TPN group had significantly lower Bacteroidetes and higher Verrucomicrobia abundance compared to controls (P-values < 0.05), and these differences became more pronounced over time. At the genus level, TPN was associated with lower abundance of Bacteroides and Bifidobacterium in all weeks.

Conclusions: TPN is associated with significant loss of biodiversity and alterations in the pattern of gut microbial colonization of infants over time. TPN-associated dysbiosis may predispose infants to adverse NICU outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594895PMC
http://dx.doi.org/10.1038/s41390-019-0391-yDOI Listing

Publication Analysis

Top Keywords

changes gut
8
gut microbiome
8
microbiome infants
8
total parenteral
8
parenteral nutrition
8
tpn group
8
compared controls
8
infants
6
tpn
6
longitudinal changes
4

Similar Publications

Rat Fecal Metabolomics-Based Analysis.

Methods Mol Biol

January 2025

Biomic Auth, Bioanalysis and Omics Laboratory, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, Thermi, Greece.

The gut's symbiome, a hidden metabolic organ, has gained scientific interest for its crucial role in human health. Acting as a biochemical factory, the gut microbiome produces numerous small molecules that significantly impact host metabolism. Metabolic profiling facilitates the exploration of its influence on human health and disease through the symbiotic relationship.

View Article and Find Full Text PDF

The human body harbors a vast array of microorganisms. Changes in the microbial ecosystem can potentially lead to diseases, including cancer. Traditionally, research has focused more on the gut microbiota and its influence on cancer.

View Article and Find Full Text PDF

Unlabelled: Global aquaculture production faces the challenge of biologically cycling nitrogenous waste. Biofloc technology (BFT) systems offer the potential to reduce water consumption and eliminate waste products by using beneficial microorganisms to convert waste into usable nutrients or non-toxic molecules. Unlike flow-through systems (FTS), which depend on continuous water exchange and result in higher operational costs as well as limited microbiome stability, BFT operates without the need for constant water exchange.

View Article and Find Full Text PDF

Certain dietary fibers exhibit prebiotic effects on gut microbiota, but their influence on oral health remains unclear. This study conducted a systematic review across four databases to examine the potential effects of dietary fibers on dental caries. Data selection and extraction were conducted independently and in duplicate.

View Article and Find Full Text PDF

Bowel preparation before colonoscopy: Consequences, mechanisms, and treatment of intestinal dysbiosis.

World J Gastroenterol

January 2025

Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China.

The term "gut microbiota" primarily refers to the ecological community of various microorganisms in the gut, which constitutes the largest microbial community in the human body. Although adequate bowel preparation can improve the results of colonoscopy, it may interfere with the gut microbiota. Bowel preparation for colonoscopy can lead to transient changes in the gut microbiota, potentially affecting an individual's health, especially in vulnerable populations, such as patients with inflammatory bowel disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!