TiO nanopillar arrays coated with gelatin film for efficient capture and undamaged release of circulating tumor cells.

Nanotechnology

Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, People's Republic of China.

Published: August 2019

Circulating tumor cells (CTCs) are important for the detection and treatment of cancer. Nevertheless, a low density of circulating tumor cells makes the capture and release of CTCs an obstacle. In this work, TiO nanopillar arrays coated with gelatin film were synthesized for efficient capture and undamaged release of circulating tumor cells. The scanning electron microscope and atomic force microscope images demonstrate that the substrate has a certain roughness. The interaction between the cell membrane and the nanostructure substrate contributes to the efficient capture of CTC (capture efficiency up to 94.98%). The gelatin layer has excellent biocompatibility and can be rapidly digested by matrix metalloproteinase (MMP9), which realizes the non-destructive release of CTCs (0.1 mg ml, 5 min, nearly 100% release efficiency, activity 100%). Therefore, by our strategy, the CTCs can be efficiently captured and released undamaged, which is important for subsequent analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab176cDOI Listing

Publication Analysis

Top Keywords

circulating tumor
16
tumor cells
16
efficient capture
12
tio nanopillar
8
nanopillar arrays
8
arrays coated
8
coated gelatin
8
gelatin film
8
capture undamaged
8
undamaged release
8

Similar Publications

Emergence of Circulating Tumor DNA as a Precision Biomarker in Lung Cancer Radiation Oncology and Beyond.

Hematol Oncol Clin North Am

December 2024

Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. Electronic address:

Circulating tumor DNA (ctDNA) is emerging as a transformative biomarker in the management of non-small cell lung cancer (NSCLC). This review focuses on its role in detecting minimal residual disease (MRD), predicting treatment response, and guiding therapeutic decision-making in radiation oncology and immunotherapy. Key studies demonstrate ctDNA's prognostic value, particularly in identifying relapse risk and refining patient stratification for curative-intent and consolidative treatments.

View Article and Find Full Text PDF

Neoadjuvant and adjuvant osimertinib in stage IA-IIIA, EGFR-mutant non-small cell lung cancer (NORA).

J Thorac Oncol

December 2024

Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:

Introduction: Treatment with adjuvant osimertinib for three years is the standard-of-care for resected stage IB-IIIA non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR)-mutations. The role of neoadjuvant osimertinib in the perioperative setting is yet to be elucidated in the NeoADAURA study (NCT04351555).

Methods: This is a single center, pilot study of patients with clinical stage IA-IIIA NSCLC (AJCC 8th edition) harboring an activating EGFR mutation (Exon 19 deletion, L858R) (NCT04816838).

View Article and Find Full Text PDF

Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance.

Int J Biol Macromol

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan. Electronic address:

Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity.

View Article and Find Full Text PDF

Chemotherapy is the primary treatment option for pancreatic cancer, although nanocarrier-based drug delivery systems often struggle with multiple physiological barriers, limiting their therapeutic efficacy. Here, we developed a pH/reactive oxygen species (ROS) dual-sensitive self-adaptive nanocarrier (DAT) encapsulating camptothecin (CPT), an analog of the pancreatic chemotherapeutic drug irinotecan (CPT-11), to enhance chemotherapy outcomes in orthotopic pancreatic cancer by addressing multiple physiological barriers. The nanocarrier features a peripherally positively charged arginine (Arg) residue on DAT and is masked with an acid-labile 2,3-dimethylmaleic anhydride (DA) to improve circulation time.

View Article and Find Full Text PDF

Background: The use of liquid biopsy of total cell-free DNA (cfDNA) to identify otherwise undetectable cancers has attracted interest; however, its efficacy remains unknown. We explored whether analysis using total cfDNA is efficacious for Japanese patients with oral squamous cell carcinoma (OSCC).

Methods: We collected total cfDNA from nine patients with OSCC preoperatively, 1 month postoperatively, and every 3 months thereafter to analyze this association.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!