In this study, the role of a rice high-affinity sulphate transporter, OsSultr1;1, in maintaining sulphur demand under arsenic (As) stress has been investigated. Saccharomyces cerevisiae mutant, YSD1, deficient in sulphur transport and Arabidopsis thaliana plants expressing OsSultr1;1, were used to analyze different parameters. Complementation of YSD1 using OsSultr1;1 showed tolerance towards heavy metals. Transgenic Arabidopsis lines expressing OsSultr1;1 developed a significant tolerance towards different abiotic stresses including heavy metals under sulphur limiting conditions. Transgenic lines showed 75-76% and 60-68% reduction in root length compared to 82% and 76% in wild type plants under arsenite [As(III); 10 μM] and arsenate [As(V); 100 μM] stress respectively. The analysis of superoxide radicals and hydrogen peroxide indicated reduced oxidative burst in transgenic as compared to wild type plants under As stress. Real-time PCR analysis showed differential expression of the genes associated with sulphur metabolism in the transgenic lines. A significant decrease (up to 50%) in malondialdehyde (MDA) levels and increased glutathione (GSH) content in transgenic lines demonstrated better detoxification mechanism compared to wild type plants under As stress. We conclude that over-expression of high-affinity sulphate transporters may provide tolerance towards different abiotic stresses under limiting sulphur environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.04.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!