F-fluoride as a prognostic indicator of bone regeneration.

Acta Biomater

Department of Biomedical Engineering, Lund University, Lund, Sweden; Department of Orthopaedics, Clinical Sciences, Lund University, Lund, Sweden. Electronic address:

Published: May 2019

Positron emission tomography (PET) is a form of nuclear imaging, which quantitatively assesses the metabolic activity through the uptake of radioactive tracers. F-fluoride is a positron-emitting isotope with high affinity for bone. Despite its potential as a non-invasive measure of bone metabolism, quantitative F-fluoride PET has only been used sparsely in orthopaedic applications. It has been speculated that F-fluoride PET characterizes cellular activity of bone forming cells in the early stages of the regenerative process and therefore precedes the mineralization detected by conventional computed tomography (CT). Our aim was thus to combine in vivo PET and CT to map the spatiotemporal course of bone regeneration during fracture healing using an open femur fracture model in the rat and characterize regeneration in untreated and pharmacologically treated fractures using both imaging modalities. We hypothesized that PET F-fluoride tracer activity at an earlier time point is predictive of CT measured bone formation at a later time point. On the basis of the RMSE and R metrics of linear regression models it was conceivable for bone volumes to be predicted up to three weeks in advance in a rodent model (RMSE: 14 mm-18 mm, R: 0.79-0.82). Moreover, the data suggested that F-fluoride positron-emitting activity had the potential to separate bone formation from resorption and thus could be of interest across a wide array of orthopaedic applications. Based on this data, we conclude that F-fluoride positron-emitting activity is strongly correlated to bone formation and could potentially predict the volume of bone regenerated at fracture sites. The volume of bone regenerated at a fracture site can be interpreted as a measure of the healing response and F-fluoride should be further investigated as a predictive diagnostic tool to identify if bone fractures will heal successfully or result in delayed healing or non-union. STATEMENT OF SIGNIFICANCE: We aimed to combine in vivo PET and CT imaging to map the spatiotemporal course of bone regeneration during fracture healing using an open femur fracture model in the rat and characterize regeneration in untreated and pharmacologically treated fractures using both imaging modalities. We hypothesized that PET F-fluoride tracer activity at an earlier time point is predictive of CT measured bone formation at a later time point. Our data suggest that F-fluoride positron-emitting activity can separate bone formation from resorption and thus could be of interest across a wide array of orthopaedic applications including as a predictive diagnostic tool to identify if fractures will heal successfully or result in delayed healing or non-union.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2019.04.008DOI Listing

Publication Analysis

Top Keywords

bone formation
20
f-fluoride positron-emitting
16
time point
16
bone
15
bone regeneration
12
orthopaedic applications
12
positron-emitting activity
12
f-fluoride
10
f-fluoride pet
8
combine vivo
8

Similar Publications

Comprehensive three-dimensional microCT and signaling analysis reveal the teratogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on craniofacial bone development in mice.

Ecotoxicol Environ Saf

January 2025

Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China. Electronic address:

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.

View Article and Find Full Text PDF

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Evidence for Endogenous Collagen in Fossil Bone.

Anal Chem

January 2025

Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, U.K.

Reports of proteins in fossilized bones have been a subject of controversy in the scientific literature because it is assumed that fossilization results in the destruction of all organic components. In this paper, a novel combination of analytical techniques is used to address this question for an exceptionally well-preserved sacrum excavated from the Upper Cretaceous strata of the South Dakota Hell Creek Formation. Cross-polarized light microscopy (XPol) shows birefringence consistent with collagen presence.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) is a chronic systemic bone metabolism disorder. Promotion in the patterns of human bone marrow mesenchymal stem cells (hBMSCs) differentiation towards osteoblasts contributes to alleviating osteoporosis. Aucubin, a natural compound isolated from the well-known herbal medicine Eucommia, was previously shown to possess various pharmacological effects.

View Article and Find Full Text PDF

Introduction: Extraneural metastases (ENM) from glioblastoma (GBM) remain extremely rare with only a scarce number of cases described in the literature. The lack of cases leads to no consensus on the optimal treatment and follow-up of these patients.

Research Question: Do patient or tumor characteristics describe risk factors for ENM in GBM patients, and is it possible to identify mechanisms of action?

Material And Methods: This study presents a 55-year-old man with diagnosed GBM who was referred to a CT due to reduced general condition and mild back pain which revealed extensive systemic metastases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!