The principle role of α-crystallin is chaperoning activity that protect s other proteins against different stresses. High glucose concentration induces the osmotic stress and results in biomacromolecules glycation, which is subsequently cause their conformational and functional changes. Here, the roles of l-lysine (Lys) on the prevention of α-crystallin glycation in both in vitro and in vivo conditions are investigated. The catalase (CAT) activity was considered as a marker of α-crystallin functionality in both conditions. Streptozotocin-induced diabetic rats were treated with 0.1% of the Lys in drinking water. The purified α-crystallin was also incubated with glucose, in the presence or absence of the Lys and its structure-function was compared. The results showed that the visual cataract score was significantly lower in the diabetic rats treated with Lys. After Lys treatment, CAT, superoxide dismutase, aldose reductase and other biochemical parameters in the lens and serum of the diabetic rats returned to the normal value. Formation of the advanced glycation endproducts (AGEs), protein cross-linking, and the hydrophobicity of α-crystallin were changed due to glycation, but they were reversed by Lys treatment. The glycated α-crystallin lost its chaperone activity against heat denatured-CAT, but in the presence of Lys, it preserved its activity and prevented CAT aggregation. In conclusion, Lys treatment significantly inhibited the progression of diabetic cataract in rats. These effects were due to the Lys antiglycating and antioxidant effects, in addition to its protective effect against α-crystallin chaperoning activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.04.037DOI Listing

Publication Analysis

Top Keywords

diabetic rats
12
lys treatment
12
lys
9
prevention α-crystallin
8
α-crystallin glycation
8
α-crystallin chaperoning
8
chaperoning activity
8
rats treated
8
α-crystallin
7
glycation
5

Similar Publications

Low magnesium (Mg) intake increases the risk of various diseases such as anxiety disorder, depression, and diabetes. However, a reliable biomarker of mild Mg deficiency due to low Mg intake has not yet been identified. We speculate that metabolomics will be effective for biomarker discovery because Mg can affect various metabolic processes in the body.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is an intricate disease correlated with many metabolic deregulations, including disordered glucose metabolism, oxidative stress, inflammation, and cellular apoptosis due to hepatic gluconeogenesis aberrations. However, there is no radical therapy to inhibit hepatic gluconeogenesis disturbances yet. We thus sought to probe the effectiveness and uncover the potential mechanism of quercetin (QCT) and silk sericin (SS) in mitigating hyperglycemia-induced hepatic gluconeogenesis disorder, which remains obscure.

View Article and Find Full Text PDF

Biomolecular Microneedle Initiates FeO/MXene Heterojunction-Mediated Nanozyme-Like Reactions and Bacterial Ferroptosis to Repair Diabetic Wounds.

Adv Sci (Weinh)

January 2025

Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes.

View Article and Find Full Text PDF

Aim: Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored.

View Article and Find Full Text PDF

Background: Diabetic neuropathy (DN) is a heterogeneous condition characterized by complex pathophysiological changes affecting both autonomic and somatic components of the nervous system. Inflammation and oxidative stress are recognized contributors to the pathogenesis of DN. This study aims to evaluate the therapeutic potential of dichloroacetic acid (DCA) in alleviating DN symptoms, focusing on its anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!