Stunning progress in the experimental resolution and control of natural or man-made complex systems at the level of their quantum mechanical constituents raises the question, across diverse subdisciplines of physics, chemistry, and biology, whether the fundamental quantum nature may condition the dynamical and functional system properties on mesoscopic if not macroscopic scales. However, which are the distinctive signatures of quantum properties in complex systems, notably when modulated by environmental stochasticity and dynamical instabilities? It appears that, to settle this question across the above communities, a shared understanding is needed of the central feature of quantum mechanics: wave-particle duality. In this Perspective, we elaborate how randomness induced by this very quantum property can be discerned from the stochasticity ubiquitous in complex systems already on the classical level. We argue that in the study of increasingly complex systems, such distinction requires the analysis of single incidents of quantum dynamical processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b00676 | DOI Listing |
J Med Internet Res
January 2025
Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, United States of America.
Negotiating social dynamics among allies and enemies is a complex problem that often requires individuals to tailor their behavioral approach to a specific situation based on environmental and/or social factors. One way to make these contextual adjustments is by arranging behavioral output into intentional patterns. Yet, few studies explore how behavioral patterns vary across a wide range of contexts, or how allies might interlace their behavior to produce a coordinated response.
View Article and Find Full Text PDFPLoS One
January 2025
Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto City, Kyoto Prefecture, Japan.
Soil imaging in the field and laboratory has greatly advanced our understanding of plant root systems. Soil fungi function as important plant symbionts and decomposers of complex organic material in soil environments. For fungal hyphae, however, the application of soil imaging remains scarce, limiting our understanding of hyphal systems in soil.
View Article and Find Full Text PDFSci Adv
January 2025
Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
Understanding how land use affects temporal stability is crucial to preserve biodiversity and ecosystem functions. Yet, the mechanistic links between land-use intensity and stability-driving mechanisms remain unclear, with functional traits likely playing a key role. Using 13 years of data from 300 sites in Germany, we tested whether and how trait-based community features mediate the effect of land-use intensity on acknowledged stability drivers (compensatory dynamics, portfolio effect, and dominant species variability), within and across plant and arthropod communities.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.
The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!