A novel approach toward the [5-7]fused bicyclic core of thapsigargin, a subnanomolar inhibitor of the endo/sarcoplasmic calcium ATPase (SERCA), is presented. The synthetic route includes an original Ti(II)-mediated hydroxy-directed reductive coupling of an enantiomerically enriched propargylic alcohol and an intramolecular Rh(I)-catalyzed cyclocarbonylation reaction as key steps. Interestingly, through the first experiments of titanocene-mediated reductive cyclization of a 1,8-enyne, a seven-membered cycle was isolated as a unique product with a total diastereoselectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.8b03249 | DOI Listing |
J Org Chem
May 2019
Unité CNRS UMR 8638 , Université Paris Descartes, Faculté de Pharmacie , Sorbonne Paris Cité, 4 Avenue de l'Observatoire , Paris Cedex 06 75270 , France.
A novel approach toward the [5-7]fused bicyclic core of thapsigargin, a subnanomolar inhibitor of the endo/sarcoplasmic calcium ATPase (SERCA), is presented. The synthetic route includes an original Ti(II)-mediated hydroxy-directed reductive coupling of an enantiomerically enriched propargylic alcohol and an intramolecular Rh(I)-catalyzed cyclocarbonylation reaction as key steps. Interestingly, through the first experiments of titanocene-mediated reductive cyclization of a 1,8-enyne, a seven-membered cycle was isolated as a unique product with a total diastereoselectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!