The signal produced by aqueous dispersions of bioluminescent, metal-responsive whole-cell bacterial sensors is indicative of the concentration of bioavailable metal ions in solution. The conventional calibration-based strategy followed for measuring this concentration is however inadequate to provide any quantitative prediction of the cell response over time as a function of, e.g., their growth features, their defining metal accumulation properties, or the physicochemical medium composition. Such an evaluation is still critically needed for assessing on a mechanistic level the performance of biosensors in terms of metal bioavailability and toxicity monitoring. Herein we report a comprehensive formalism unraveling how the dependence of bioluminescence on time is governed by the dynamics of metal biouptake, by the activation kinetics of lux-based reporter gene, and by the ensuing rate of luciferase production, the kinetics of light emission, and quenching. It is shown that the bioluminescence signal corresponds to the convolution product between two time-dependent functions, one detailing the dynamic interplay of the above micro- and nanoscale processes, and the other pertaining to the change in concentration of photoactive cell sensors over time. Numerical computations illustrate how the shape and magnitude of the bioluminescence peak(s) are intimately connected to the dependence of the photoactive cell concentration on time and to the magnitudes of Deborah numbers that compare the relevant time scales of the biointerfacial and intracellular events controlling light emission. Explicit analytical expressions are further derived for practical situations where bioluminescence is proportional to the concentration of metal ions in solution. The theory is further quantitatively supported by experiments performed on luminescent cadmium-responsive lux-based Escherichia coli biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.9b00349DOI Listing

Publication Analysis

Top Keywords

whole-cell bacterial
8
bacterial sensors
8
metal ions
8
ions solution
8
light emission
8
photoactive cell
8
concentration
5
metal
5
time
5
decoding time-dependent
4

Similar Publications

Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.

The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.

View Article and Find Full Text PDF

[Research progress in the design and application of whole-cell biosensors for antibiotics].

Sheng Wu Gong Cheng Xue Bao

January 2025

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

Antibiotics are chemicals with bactericidal or bacteriostatic activity produced by microorganisms and artificially synthesized. Since the discovery of penicillin by Alexander Fleming in 1928, antibiotics have been widely used in clinical treatments as well as in the animal husbandry and aquaculture, leading to antibiotic residues in soil, water, food and other environments. At the same time, antibiotic resistance is increasingly serious, which necessitates the discovery of novel antibiotics.

View Article and Find Full Text PDF

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Tick-borne infections are the most common vector-borne diseases in the USA. Ticks harbor and transmit several infections with Lyme disease being the most common tickborne infection in the US and Europe. Lack of awareness about tick populations, specific diagnostic tests, and overlapping signs and symptoms of tick-borne infections can often lead to misdiagnosis affecting treatment and the prevalence data reported especially for non-Lyme tick-borne infections.

View Article and Find Full Text PDF

High-affinity promotor binding of YhaJ mediates a low signal leakage for effective DNT detection.

Front Microbiol

January 2025

Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.

The YhaJ transcription factor responds to dinitrophenol (DNT) and its metabolic products. The YhaJ-involving cells have been exploited for whole-cell biosensors of soil-buried landmines. Such biosensors would decrease the damage to personnel who approach landmine fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!