The nature of the interface between the solute and the solvent in a colloidal solution has attracted attention for a long time. For example, the surface of colloidal nanocrystals (NCs) is specially designed to impart colloidal stability in a variety of polar and nonpolar solvents. This work focuses on a special type of colloids where the solvent is a molten inorganic salt or organic ionic liquid. The stability of such colloids is hard to rationalize because solvents with high density of mobile charges efficiently screen the electrostatic double-layer repulsion, and purely ionic molten salts represent an extreme case where the Debye length is only ∼1 Å. We present a detailed investigation of NC dispersions in molten salts and ionic liquids using small-angle X-ray scattering (SAXS), atomic pair distribution function (PDF) analysis and molecular dynamics (MD) simulations. Our SAXS analysis confirms that a wide variety of NCs (Pt, CdSe/CdS, InP, InAs, ZrO) can be uniformly dispersed in molten salts like AlCl/NaCl/KCl (AlCl/AlCl) and NaSCN/KSCN and in ionic liquids like 1-butyl-3-methylimidazolium halides (BMIMX, where X = Cl, Br, I). By using a combination of PDF analysis and molecular modeling, we demonstrate that the NC surface induces a solvent restructuring with electrostatic correlations extending an order of magnitude beyond the Debye screening length. These strong oscillatory ion-ion correlations, which are not accounted by the traditional mechanisms of steric and electrostatic stabilization of colloids, offer additional insight into solvent-solute interactions and enable apparently "impossible" colloidal stabilization in highly ionized media.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b01292DOI Listing

Publication Analysis

Top Keywords

molten salts
16
ionic liquids
12
salts ionic
8
correlations extending
8
debye length
8
pdf analysis
8
analysis molecular
8
ionic
6
nanocrystals molten
4
salts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!