The strict monitoring and precise measurements of chemical warfare agents (CWAs) in environmental and other complex samples with high accuracy have great practical significance from the forensic and Chemical Weapons Convention (CWC) verification point of view. Therefore, this study was aimed to develop an efficient extraction and enrichment method for identification and quantification of toxic agents, especially with high sensitivity and multidetection ability in complex samples. It is the first study on solid-phase extraction (SPE) of CWAs and their related compounds from hydrocarbon backgrounds using covalent triazine-based frameworks (CTFs). This nitrogen-rich CTF sorbent has shown an excellent SPE performance toward sample cleanup by selective elimination of hydrocarbon backgrounds and enrich the CWC related analytes in comparison with the conventional and other reported methods. The best enrichment of the analytes was found with the washing solvent (1 mL of n-hexane) and the extraction solvent (1 mL of dichloromethane). Under the optimized conditions, the SPE method had good linearity in the concentration range of 0.050-10.0 μg mL for organophosphorus esters, 0.040-20.0 μg mL for nerve agents, and 0.200-20.0 μg mL for mustards with correlation coefficients ( r) between 0.9867 and 0.9998 for all analytes. Limits of detection ( S/ N = 3:1) in the SIM mode were found to be in the range of 0.015-0.050 μg mL for organophosphorus esters, 0.010-0.030 μg mL for nerve agents, and 0.050-0.100 μg mL for blister agents. Limits of quantification ( S/ N = 10:1) were found in the range of 0.050-0.200 μg mL for organophosphorus esters, 0.040-0.100 μg mL for nerve agents, and 0.180-0.350 μg mL for blister agents in the SIM mode. The recoveries of all analytes ranged from 87 to 100% with the relative standard deviations ranging from 1 to 8%. This method was also successfully applied for the sample preparation of H NMR analysis of sulfur and nitrogen mustards in the presence of hydrocarbon backgrounds. Therefore, this SPE method provides the single sample preparation for both NMR and GC-MS analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b02354DOI Listing

Publication Analysis

Top Keywords

hydrocarbon backgrounds
16
μg organophosphorus
12
organophosphorus esters
12
μg nerve
12
nerve agents
12
μg
9
elimination hydrocarbon
8
nmr analysis
8
chemical weapons
8
weapons convention
8

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.

View Article and Find Full Text PDF

Studies have demonstrated that resveratrol exerts several pharmacological effects. However, the pharmacokinetic parameters are not completely established. This study describes the plasma pharmacokinetics and tissue distribution of resveratrol after administration by different routes and doses in rats.

View Article and Find Full Text PDF

Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.

View Article and Find Full Text PDF

Background/objectives: Polyphenols represent a new strategy of dietary intervention for heat stress regulation.

Methods: The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels.

Results: Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!