Genetic analysis identifies potential transmission of low pathogenic avian influenza viruses between poultry farms.

Transbound Emerg Dis

Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.

Published: July 2019

Poultry can become infected with low pathogenic avian influenza (LPAI) viruses via (in)direct contact with infected wild birds or by transmission of the virus between farms. This study combines routinely collected surveillance data with genetic analysis to assess the contribution of between-farm transmission to the overall incidence of LPAI virus infections in poultry. Over a 10-year surveillance period, we identified 35 potential cases of between-farm transmission in the Netherlands, of which 10 formed geographical clusters. A total of 21 LPAI viruses were isolated from nine potential between-farm transmission cases, which were further studied by genetic and epidemiological analysis. Whole genome sequence analysis identified close genetic links between infected farms in seven cases. The presence of identical deletions in the neuraminidase stalk region and minority variants provided additional indications of between-farm transmission. Spatiotemporal analysis demonstrated that genetically closely related viruses were detected within a median time interval of 8 days, and the median distance between the infected farms was significantly shorter compared to farms infected with genetically distinct viruses (6.3 versus 69.0 km; p < 0.05). The results further suggest that between-farm transmission was not restricted to holdings of the same poultry type and not related to the housing system. Although separate introductions from the wild bird reservoir cannot be excluded, our study indicates that between-farm transmission occurred in seven of nine virologically analysed cases. Based on these findings, it is likely that between-farm transmission contributes considerably to the incidence of LPAI virus infections in poultry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850361PMC
http://dx.doi.org/10.1111/tbed.13199DOI Listing

Publication Analysis

Top Keywords

between-farm transmission
16
genetic analysis
8
low pathogenic
8
pathogenic avian
8
avian influenza
8
lpai viruses
8
infected farms
8
transmission
6
viruses
5
farms
5

Similar Publications

Lumpy skin disease (LSD), caused by the LSD virus (LSDV), a dsDNA virus of the genus Capripoxvirus, represents a significant cross-border infectious threat, particularly impacting cattle and water buffaloes through transmission by blood-feeding insects. Traditionally endemic to Southern Africa, LSD has rapidly spread over the past decade through the Middle East to Eastern Europe and China, reaching Korea in October 2023. This outbreak prompted a nationwide vaccination campaign, addressing both the disease's severe economic impact and its status as a notifiable disease under the World Organisation for Animal Health.

View Article and Find Full Text PDF

Introduction: Foot-and-mouth disease (FMD) affects multiple food-animal species and spreads rapidly among ungulate populations, posing significant challenges for disease control. Understanding the dynamics of FMD transmission and evaluating the effectiveness of control measures are critical for mitigating its impact. This study introduces a multiscale compartmental stochastic model to simulate FMD spread and assess countermeasures.

View Article and Find Full Text PDF

Surviving the summer: foot-and-mouth disease virus survival in U.S. regional soil types at high ambient temperatures.

Front Vet Sci

October 2024

United States Department of Agriculture, Agricultural Research Service, Manhattan, KS, United States.

Introduction: Foot-and-mouth disease (FMD) is one of the most economically significant global livestock diseases. In the U.S.

View Article and Find Full Text PDF

Information on the epidemiological and economic consequences of control measures is fundamental to design effective foot and mouth disease (FMD) control measures. One approach to obtaining this information is through bioeconomic modelling. In this study, a bioeconomic model was used to evaluate FMD control in two different study areas in Thailand: a high farm density area predominantly consisting of dairy farms and a low farm density area with mixed farm types.

View Article and Find Full Text PDF

Porcine circoviruses (PCVs) are widely distributed in swine herds. PCV2, the significant swine pathogen, causes infections characterized by growth and development disorders, skin lesions, and respiratory distress. PCV3 has been circulating worldwide and can be associated with various clinical signs and disease developments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!