A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ocean pH fluctuations affect mussel larvae at key developmental transitions. | LitMetric

Ocean pH fluctuations affect mussel larvae at key developmental transitions.

Proc Biol Sci

1 Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS , 181 chemin du Lazaret, 06230 Villefranche-sur-mer , France.

Published: December 2018

Coastal marine ecosystems experience dynamic fluctuations in seawater carbonate chemistry. The importance of this variation in the context of ocean acidification requires knowing what aspect of variability biological processes respond to. We conducted four experiments (ranging from 3 to 22 days) with different variability regimes (pH 7.4-8.1) assessing the impact of diel fluctuations in carbonate chemistry on the early development of the mussel Mytilus galloprovincialis. Larval shell growth was consistently correlated to mean exposures, regardless of variability regimes, indicating that calcification responds instantaneously to seawater chemistry. Larval development was impacted by timing of exposure, revealing sensitivity of two developmental processes: development of the shell field, and transition from the first to the second larval shell. Fluorescent staining revealed developmental delay of the shell field at low pH, and abnormal development thereof was correlated with hinge defects in D-veligers. This study shows, for the first time, that ocean acidification affects larval soft-tissue development, independent from calcification. Multiple developmental processes additively underpin the teratogenic effect of ocean acidification on bivalve larvae. These results explain why trochophores are the most sensitive life-history stage in marine bivalves and suggest that short-term variability in carbonate chemistry can impact early larval development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304040PMC
http://dx.doi.org/10.1098/rspb.2018.2381DOI Listing

Publication Analysis

Top Keywords

carbonate chemistry
12
ocean acidification
12
variability regimes
8
larval shell
8
larval development
8
developmental processes
8
shell field
8
development
6
larval
5
ocean
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!