The Arctic is undergoing dramatic environmental change with rapidly rising surface temperatures, accelerating sea ice decline and changing snow regimes, all of which influence tundra plant phenology. Despite these changes, no globally consistent direction of trends in spring phenology has been reported across the Arctic. While spring has advanced at some sites, spring has delayed or not changed at other sites, highlighting substantial unexplained variation. Here, we test the relative importance of local temperatures, local snow melt date and regional spring drop in sea ice extent as controls of variation in spring phenology across different sites and species. Trends in long-term time series of spring leaf-out and flowering (average span: 18 years) were highly variable for the 14 tundra species monitored at our four study sites on the Arctic coasts of Alaska, Canada and Greenland, ranging from advances of 10.06 days per decade to delays of 1.67 days per decade. Spring temperatures and the day of spring drop in sea ice extent advanced at all sites (average 1°C per decade and 21 days per decade, respectively), but only those sites with advances in snow melt (average 5 days advance per decade) also had advancing phenology. Variation in spring plant phenology was best explained by snow melt date (mean effect: 0.45 days advance in phenology per day advance snow melt) and, to a lesser extent, by mean spring temperature (mean effect: 2.39 days advance in phenology per °C). In contrast to previous studies examining sea ice and phenology at different spatial scales, regional spring drop in sea ice extent did not predict spring phenology for any species or site in our analysis. Our findings highlight that tundra vegetation responses to global change are more complex than a direct response to warming and emphasize the importance of snow melt as a local driver of tundra spring phenology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.14639 | DOI Listing |
Data Brief
December 2024
Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Delft 2628 CN, the Netherlands.
A field campaign in the Vallunden lagoon in the Van Mijenfjorden on Spitsbergen was conducted to gather data on sea ice restoration by artificial flooding. Sea ice thickening was initiated by pumping sea water from below the first-year sea ice onto the surface without removing the covering snow layer. Part of the data was collected by four thermistor strings, two radiation sensors, and one anemometer.
View Article and Find Full Text PDFEnviron Microbiol Rep
December 2024
Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.
Snow algal blooms decrease snow albedo and increase local melt rates. However, the causes behind the size and frequency of these blooms are still not well understood. One factor likely contributing is nutrient availability, specifically nitrogen and phosphorus.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada.
The Canadian Arctic is a large and diverse geographic area that encompasses a wide variety of environmental conditions and ecosystems. Over recent decades, marine transportation has increased across the Arctic and, as a result, so has the likelihood of an oil spill. The study of oil spills in the Arctic presents unique challenges compared to temperate marine environments, due to remoteness, cold temperatures and the presence of snow and ice throughout much of the year.
View Article and Find Full Text PDFEcol Evol
November 2024
Ministry of Education Key Laboratory for Biodiversity Science and Engineering, College of Life Sciences Beijing Normal University Beijing China.
Litter decomposition is critical for maintaining productivity and nutrient cycling in forest ecosystems. Large herbivores play an essential role in determining the processes of nutrient cycling. Asian temperate forests are becoming degraded and fragmented by the widespread intensification of anthropogenic activities, including excessive livestock grazing.
View Article and Find Full Text PDFClim Dyn
February 2024
Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria.
Unlabelled: We investigate historical simulations of relevant components of the Arctic energy and water budgets for 39 Coupled Model Intercomparison Project Phase 6 (CMIP6) models and validate them against observation-based estimates. We look at simulated seasonal cycles, long-term averages and trends of lateral transports and storage rates in atmosphere and ocean as well as vertical fluxes at top-of-atmosphere and the surface. We find large inter-model spreads and systematic biases in the representation of annual cycles and long-term averages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!