Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer, representing attractive targets for diagnosis and therapy with bombesin (BBN)-like radioligands. GRPR-antagonists have lately attracted much attention owing to inherent biosafety and favorable pharmacokinetics. We herein present the GRPR-antagonist SB9 structurally resembling the known BBN-based agonist AMBA (SB9 = [Leu NHEt-desMet ]AMBA). The profiles of In-SB9 and In-AMBA were directly compared in PC-3 cells and tumor-bearing mice. SB9 and AMBA displayed high GRPR affinities. In-AMBA strongly internalized in PC-3 cells, while In-SB9 remained bound on the cell surface showing a typical GRPR-radioantagonist profile. In-SB9 was more stable than In-AMBA, but coinjection of the neprilysin (NEP) inhibitor phosphoramidon (PA) stabilized both in vivo. The radioligands displayed high tumor uptake (20.23 ± 3.41 %ID/g and 18.53 ± 1.54 %ID/g, respectively, at 4 hours pi), but In-SB9 washed faster from background. PA coinjection led to significant increase of tumor uptake, combined with better clearance for In-SB9. In short, this study has revealed superior pharmacokinetics and higher stability for the GRPR-antagonist In-SB9 vs the corresponding agonist In-AMBA consolidating previous evidence that GRPR antagonists are preferable to agonists for tumor imaging and therapy. It has also demonstrated that further pharmacokinetic improvements were feasible by in situ metabolic radioligand stabilization using PA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jlcr.3733 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!