Two brain hemispheres are unequally involved in the processing of social stimuli, as demonstrated in a wide range of vertebrates. A considerable number of studies have shown the right hemisphere advantage for social processing. At the same time, an approach-withdrawal hypothesis, mainly based on experimental evidence, proposes the involvement of both brain hemispheres according to approach and withdrawal motivation. The present study aimed to test the relative roles of the two hemispheres in social responses displayed in a natural context. Visual biases, implicating hemispheric lateralization, were estimated in the social interactions of saiga antelope in the wild. In individually identified males, the left/right visual field use during approach and withdrawal responses was recorded based on the lateral head/body position, relative to the conspecific. Lateralized approach responses were investigated in three types of interactions, with left visual field bias found for chasing a rival, no bias-for attacking a rival, and right visual field bias-for pursuing a female. In two types of withdrawal responses, left visual field bias was found for retreating after fighting, while no bias was evident in fight rejecting. These findings demonstrate that neither the right hemisphere advantage nor the approach-withdrawal distinction can fully explain the patterns of lateralization observed in social behaviour. It is clear that both brain hemispheres play significant roles in social responses, while their relative contribution is likely determined by a complex set of motivational and emotional factors rather than a simple dichotomous distinction such as, for example, approach versus withdrawal motivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10071-019-01259-0 | DOI Listing |
Biomedicines
December 2024
Diagnostic and Interventional Neuroradiology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
The glycosylphosphatidylinositol (GPI) is a glycol-lipid that anchors several proteins to the cell surface. The GPI-anchor pathway is crucial for the correct function of proteins involved in cell function, and it is fundamental in early neurogenesis and neural development. The PIG gene family is a group of genes involved in this pathway with six genes identified so far, and defects in these genes are associated with a rare inborn metabolic disorder manifesting with a spectrum of clinical phenotypes in newborns and children.
View Article and Find Full Text PDFBrain Sci
December 2024
Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02138, USA.
Objective: This study aimed to explore longitudinal relationships between neurophysiological biomarkers and upper limb motor function recovery in stroke patients, focusing on electroencephalography (EEG) and transcranial magnetic stimulation (TMS) metrics.
Methods: This longitudinal cohort study analyzed neurophysiological, clinical, and demographic data from 102 stroke patients enrolled in the DEFINE cohort. We investigated the associations between baseline and post-intervention changes in the EEG theta/alpha ratio (TAR) and TMS metrics with upper limb motor functionality, assessed using the outcomes of five tests: the Fugl-Meyer Assessment (FMA), Handgrip Strength Test (HST), Pinch Strength Test (PST), Finger Tapping Test (FTT), and Nine-Hole Peg Test (9HPT).
Brain Sci
December 2024
Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), 39123 Trento, Italy.
In glioma surgery, maximizing the extent of resection while preserving cognitive functions requires an understanding of the unique architecture of the white matter (WM) pathways of the single patient and of their spatial relationship with the tumor. Tractography enables the reconstruction of WM pathways, and bundle segmentation allows the identification of critical connections for functional preservation. This study evaluates the effectiveness of a streamline-based approach for bundle segmentation on a clinical dataset as compared to the traditional ROI-based approach.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University Hospital of Careggi, University of Florence, 50134 Florence, Italy.
Navigated transcranial magnetic stimulation (nTMS) has seldom been used to study visuospatial (VS) circuits so far. Our work studied (I) VS functions in neurosurgical oncological patients by using repetitive nTMS (rnTMS), (II) the possible subcortical circuits underneath, and (III) the correspondence between nTMS and direct cortical stimulation (DCS) during awake procedures. We designed a monocentric prospective study, adopting a protocol to use rnTMS for preoperative planning, including VS functions for lesions potentially involving the VS network, including neurosurgical awake and asleep procedures.
View Article and Find Full Text PDFIn sensory and mid-level regions of the brain, stimulus information is often topographically organized; functional responses are arranged in maps according to features such as retinal coordinates, auditory pitch, and object animacy or size. However, such organization is typically measured during stimulus input, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!