Peripheral naive CD4 and CD8 cells are developed in the thymus and proliferate and differentiate into various specialized T cell subsets upon activation by peptide-major histocompatibility complexes in periphery to execute different functions during immune responses. Cytokines, transcription factors, and a large number of intracellular molecules have been shown to affect T cell development, activation, and function. In addition, epigenetic modifications, such as histone modification and DNA methylation, regulate T cell biology. The epigenetic modifications are regulated by a range of DNA methyltransferases, DNA demethylation enzymes, and histone modification enzymes. Dysregulations of epigenetic modifications are closely associated with autoimmune diseases and tumorigenesis. Here, we review the current literature about the functions of DNA and histone modification enzymes in T cell development, activation, differentiation, and function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00281-019-00731-wDOI Listing

Publication Analysis

Top Keywords

modification enzymes
12
epigenetic modifications
12
histone modification
12
differentiation function
8
cell development
8
development activation
8
regulation cell
4
cell differentiation
4
epigenetic
4
function epigenetic
4

Similar Publications

Characterization of oligosaccharides produced by a truncated dextransucrase from Weissella confusa Wcp3a isolated from pozol, a traditional fermented corn beverage.

Int J Biol Macromol

January 2025

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico. Electronic address:

Glucansucrase Dsr_Wcp3a from a Weissella confusa strain discovered in fermented maize (pozol) was produced in E. coli BL21 resulting in three truncated forms of the native enzyme. An important modification of specificity is observed, as the truncated enzymes synthesize low molecular weight dextran from sucrose, probably due to the absence of domains IV and V, compared to the native enzyme which produces high molecular weight dextran.

View Article and Find Full Text PDF

Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.

View Article and Find Full Text PDF

Triune Engineering Approach for (+)-valencene Overproduction in Yarrowia lipolytica.

Biotechnol J

January 2025

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.

View Article and Find Full Text PDF

Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).

View Article and Find Full Text PDF

Type II restriction-modification (R-M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!