CD4 regulatory T cells (Tregs) expressing the transcription factor forkhead box P3 (FoxP3) play an important role in self-tolerance and immune homeostasis. Tregs have evolved to protect the host from aberrant immune responses against self-components and collateral damages occurring in the process of defense against invading pathogens by softening immune responses. However, they turned to be a scourge in malignant tumors by not only allowing and promoting tumor growth but also suppressing effective antitumor actions, both inherent (host's immune surveillance) and extrinsic (anticancer therapy). An increase in the number of Tregs infiltrating into tumor sites and a concomitant decrease in the number of CD8 cytotoxic T lymphocytes are associated with a poor prognosis for various types of cancers, marking Tregs as notorious meddlers with an effective antitumor response. Various cancer immunotherapy approaches are often dampened by meddling Tregs, making them one of the major targets in the treatment of cancer. The recent success of immune checkpoint inhibitors (ICIs) that target immune checkpoint molecules expressed by Tregs or effector T cells implies, that "meddling with meddlers" represents an effective strategy in cancer immunotherapy. However, clinical responses to ICIs are effective and durable only in some patients with cancer, whereas more than half of them do not show significant clinical improvement. This implies that a therapeutic approach based on the use of a single ICI, or targeting Tregs alone, is insufficient, highlighting the need for combinatorial approaches. With regard to antitumor immune stimulation, several approaches, such as vaccination with peptides (or the corresponding DNA) to stimulate antigen-presenting CD8 T cells with tumor-specific neoantigens, cancer/testis antigens, or cancer stem cell antigens, that eventually boost effective cytotoxic antitumor responses are being tested. This review describes the immunosuppressive physiology of Tregs and their meddling with the host's antitumor immunity; current and prospective approaches to curb Tregs; and approaches to augment antitumor immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433633 | PMC |
http://dx.doi.org/10.18999/nagjms.81.1.1 | DOI Listing |
Sci Immunol
January 2025
Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA.
Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.
View Article and Find Full Text PDFAnnu Rev Pathol
January 2025
Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
The immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity-a state characterized by chronic inflammation and systemic dyshomeostasis-there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
Tumor-associated macrophages (TAMs) are commonly considered accomplices in tumorigenesis and tumor development. However, the precise mechanism by which tumor cells prompt TAMs to aid in evading immune surveillance remains to be further investigated. Here, it is elucidated that tumor-secreted galectin-1 (Gal1) conferred immunosuppressive properties to TAMs.
View Article and Find Full Text PDFCancer Sci
January 2025
Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China.
The development of mesothelin (MSLN) epitope reactive T cells is observed in mice that are immunized with the MSLN vaccine. Engineered T cells expressing MSLN-reactive high-affinity TCR exhibit extraordinary therapeutic effects for invasive pancreatic ductal adenocarcinoma in a mouse model. However, the generation of MSLN-reactive T cells through the introduction of MSLN-deficient thymus and the transplantation of the latter as a cure for cancer treatment have not been tested to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!