Genetic correlations estimated from genome-wide association studies (GWASs) reveal pervasive pleiotropy across a wide variety of phenotypes. We introduce genomic structural equation modelling (genomic SEM): a multivariate method for analysing the joint genetic architecture of complex traits. Genomic SEM synthesizes genetic correlations and single-nucleotide polymorphism heritabilities inferred from GWAS summary statistics of individual traits from samples with varying and unknown degrees of overlap. Genomic SEM can be used to model multivariate genetic associations among phenotypes, identify variants with effects on general dimensions of cross-trait liability, calculate more predictive polygenic scores and identify loci that cause divergence between traits. We demonstrate several applications of genomic SEM, including a joint analysis of summary statistics from five psychiatric traits. We identify 27 independent single-nucleotide polymorphisms not previously identified in the contributing univariate GWASs. Polygenic scores from genomic SEM consistently outperform those from univariate GWASs. Genomic SEM is flexible and open ended, and allows for continuous innovation in multivariate genetic analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520146PMC
http://dx.doi.org/10.1038/s41562-019-0566-xDOI Listing

Publication Analysis

Top Keywords

genomic sem
24
multivariate genetic
12
genomic
8
genomic structural
8
structural equation
8
equation modelling
8
genetic architecture
8
architecture complex
8
complex traits
8
genetic correlations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!