The surfaceome is critical because surface proteins provide a gateway for internal signals and transfer of molecules into cells, and surfaceome differences can influence therapy response. We have used a surfaceome analysis method, based on comparing RNA-seq data between normal and abnormal cells (Surfaceome DataBase Mining or Surfaceome DBM), to identify sets of upregulated cell surface protein mRNAs in an LMO2-mediated T-ALL mouse model and corroborated by protein detection using antibodies. In this model the leukemia initiating cells (LICs) comprise pre-leukaemic, differentiation inhibited thymocytes allowing us to provide a profile of the LIC surfaceome in which GPR56, CD53 and CD59a are co-expressed with CD25. Implementation of cell surface interaction assays demonstrates fluid interaction of surface proteins and CD25 is only internalized when co-localized with other proteins. The Surfaceome DBM approach to analyse cancer cell surfaceomes is a way to find targetable surface biomarkers for clinical conditions where RNA-seq data from normal and abnormal cell are available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453905PMC
http://dx.doi.org/10.1038/s41598-019-42214-wDOI Listing

Publication Analysis

Top Keywords

surfaceome
8
leukemia initiating
8
surface proteins
8
cells surfaceome
8
rna-seq data
8
data normal
8
normal abnormal
8
surfaceome dbm
8
cell surface
8
cell
6

Similar Publications

Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules.

View Article and Find Full Text PDF

Toxin-producing strains are the etiological agents of the severe upper respiratory disease, diphtheria. A global phylogenetic analysis revealed that biotype gravis is particularly lethal as it produces diphtheria toxin and a range of other virulence factors, particularly when it encounters low levels of iron at sites of infection. To gain insight into how it colonizes its host, we have identified iron-dependent changes in the exoproteome and surfaceome of strain 1737 using a combination of whole-cell fractionation, intact cell surface proteolysis, and quantitative proteomics.

View Article and Find Full Text PDF

Phagocytosis is usually carried out by professional phagocytic cells in the context of pathogen response or wound healing. The transient surface proteins that regulate phagocytosis pose a challenging proteomics target; knowledge thereof could lead to new therapeutic insights. Herein, we describe a novel photocatalytic proximity labeling method: "μMap-Interface", allowing for spatiotemporal mapping of phagocytosis.

View Article and Find Full Text PDF

2D Nano-Photosensitizer Facilitates Proximity Labeling for Living Cells Surfaceome Deciphering.

Small

November 2024

State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Photocatalytic proximity labeling has shown great promise for mapping the spatiotemporal dynamics of surfaceome. Although cell-surface targeting photosensitizers relying on antibodies, lipid molecules, and metabolic labeling have gained effects, the development of simpler and stable methods that avoid complex chemical synthesis and biosynthesis steps is still a huge challenge. Here, the study has introduced 2D nanomaterials with the ability of cell surface engineering to perform the in situ anchoring of photosensitizer on living cell surface.

View Article and Find Full Text PDF

Breast milk is an essential source of nutrition and hydration for the infant. In addition, this highly complex fluid is rich in extracellular vesicles (EVs). Here, we have applied a microfluidic technology, lipid-based protein immobilization (LPI) and liquid chromatography with tandem mass spectrometry (LC-MS/MS) to characterize the proteome of human milk EVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!