Soft-tissue sarcomas (STS) represent a heterogeneous group of rare, malignant tumors of mesenchymal origin. Reliable sarcoma research models are scarce. We aimed to establish and characterize histologically and molecularly stable patient-derived xenograft (PDX) models from a broad variety of STS subtypes. A total of 188 fresh tumor samples from consenting patients with localized or advanced STS were transplanted subcutaneously in NMRI-nu/nu-immunodeficient mice. Once tumor growth was observed, the material was passaged to a next generation of mice. A patient-derived tumor sample was considered "successfully engrafted" whenever the sample was transplanted to passage 1. A PDX model was considered "established" when observing stable morphologic and molecular features for at least two passages. With every passage, histologic and molecular analyses were performed. Specific genomic alterations and copy-number profile were assessed by FISH and low coverage whole-genome sequencing. The tumor engraftment rate was 32% (61/188) and 188 patient samples generated a total of 32 PDX models, including seven models of myxofibrosarcoma, five dedifferentiated liposarcoma, five leiomyosarcoma, three undifferentiated pleomorphic sarcoma, two malignant peripheral nerve sheet tumor models, and single models of synovial sarcoma and some other (ultra)rare subtypes. Seventeen additional models are in early stages of engraftment (passage 1-2). Histopathologic and molecular features were compared with the original donor tumor and were stable throughout passaging. The platform is used for studies on sarcoma biology and suited for preclinical drug testing as illustrated by a number of completed and ongoing laboratory studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-18-1045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!