Membrane vesicles (MVs) are produced by various Gram positive and Gram negative pathogenic bacteria and play an important role in virulence. In this study, the membrane vesicles (MVs) of L. monocytogenes were isolated from the culture supernatant. High-resolution electron microscopy and dynamic light scattering analysis revealed that L. monocytogenes MVs are spherical with a diameter of 200 to 300 nm in size. Further, comprehensive proteomic analyses of MVs and whole cells of L. monocytogenes were performed using LC/MS/MS. A total of 1355 and 312 proteins were identified in the L. monocytogenes cells and MVs, respectively. We identified that 296 proteins are found in both whole cells, and MV proteome and 16 proteins were identified only in the MVs. Also, we have identified the virulence factors such as listeriolysin O (LLO), internalin B (InlB), autolysin, p60, NLP/P60 family protein, UPF0356 protein, and PLC-A in MVs. Computational prediction of host-MV interactions revealed a total of 1841 possible interactions with the host involving 99 MV proteins and 1513 host proteins. We elucidated the possible pathway that mediates internalization of L. monocytogenes MV to host cells and the subsequent pathogenesis mechanisms. The in vitro infection assays showed that the purified MVs could induce cytotoxicity in Caco-2 cells. Using endocytosis inhibitors, we demonstrated that MVs are internalized via actin-mediated endocytosis. These results suggest that L. monocytogenes MVs can interact with host cell and contribute to the pathogenesis of L. monocytogenes during infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmm.2019.03.008 | DOI Listing |
J Extracell Vesicles
January 2025
IPMC, UMR7275 CNRS-UniCA, INSERM U1323, team certified "Laboratory of Excellence (LABEX) Distalz", Valbonne, France.
Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA. Electronic address:
Current treatments for acute myeloid leukemia (AML) remain challenging, characterized by poor clinical outcomes. Exosomes, cell-derived membranous vesicles, has been emerging as a new modality of therapy. Here we designed and generated genetically reprogrammed exosomes with surface displayed antibodies and immunoregulatory proteins, namely programmed immune-engaging exosomes (PRIME Exos).
View Article and Find Full Text PDFFEBS Open Bio
January 2025
Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.
Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.
View Article and Find Full Text PDFSci China Life Sci
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
Extracellular vesicles (EVs) are nanosized lipid bilayer particles released by various cellular organisms that carry an array of bioactive molecules. EVs have diagnostic potential, as they play a role in intercellular interspecies communication, and could be applied in drug delivery. In contrast to mammalian cell-derived EVs, the study of EVs from bacteria, particularly Gram-positive bacteria, received less research attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!