We develop an optimized force-field for poly(3-hexylthiophene) (P3HT) and demonstrate its utility for predicting thermodynamic self-assembly. In particular, we consider short oligomer chains, model electrostatics and solvent implicitly, and coarsely model solvent evaporation. We quantify the performance of our model to determine what the optimal system sizes are for exploring self-assembly at combinations of state variables. We perform molecular dynamics simulations to predict the self-assembly of P3HT at ∼350 combinations of temperature and solvent quality. Our structural calculations predict that the highest degrees of order are obtained with good solvents just below the melting temperature. We find our model produces the most accurate structural predictions to date, as measured by agreement with grazing incident X-ray scattering experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401914PMC
http://dx.doi.org/10.3390/polym10121305DOI Listing

Publication Analysis

Top Keywords

optimization validation
4
validation efficient
4
efficient models
4
models predicting
4
predicting polythiophene
4
self-assembly
4
polythiophene self-assembly
4
self-assembly develop
4
develop optimized
4
optimized force-field
4

Similar Publications

Determination of antimicrobial resistance (AMR) in pneumococcal isolates is important for surveillance purposes and in a clinical context. Antimicrobial susceptibility testing (AST) of pneumococci is complicated by the need for exact minimal inhibitory concentrations (MICs) of beta-lactam antibiotics. Two next-generation sequencing (NGS) analysis tools have implemented the prediction of AMR in their analysis workflow, including the prediction of MICs: Pathogenwatch (https://pathogen.

View Article and Find Full Text PDF

The combination of physiology and machine learning for prediction of CPAP pressure and residual AHI in OSA.

J Clin Sleep Med

January 2025

Division of Pulmonary, Critical Care, and Sleep Medicine, UC San Diego, San Diego, CA.

Continuous positive airway pressure (CPAP) is the treatment of choice for obstructive sleep apnea (OSA); however some people have residual respiratory events or require significantly higher CPAP pressure while on therapy. Our objective was to develop predictive models for CPAP outcomes and assess whether the inclusion of physiological traits enhances prediction. We constructed predictive models from baseline information for subsequent residual apnea-hypopnea index (AHI) and optimal CPAP pressure.

View Article and Find Full Text PDF

Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO to epoxide.

Org Biomol Chem

January 2025

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.

View Article and Find Full Text PDF

Immunotherapy utilizes immune cells to target cancer and improves treatment outcomes with few side effects. Despite the effectiveness of immunotherapy, the limited availability of monocytes, which are essential for the differentiation of antigen-presenting cells, remains a major challenge. In this study, we developed a technique for inducing monocytes from hematopoietic stem and progenitor cells by using a serum-free (SF) medium supplemented with optimal concentrations of serum substitutes and cytokines.

View Article and Find Full Text PDF

An Integrated, Portable, and Automatic Digital Detection System for Hepatitis B Virus Using Hybrid Magnetic System.

Small Methods

January 2025

College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.

The rapid, precise, and automated diagnosis of infectious diseases is crucial for effective disease management and control. Herein, the integrated portable and automatic digital detection system (IPADS), a novel diagnostic platform for nucleic acid detection is introduced. The device employs the hybrid magnetic system (HMS), which uses an electromagnet and a movable permanent magnet to modulate the magnetic field and control bead movement, increasing nucleic acid extraction efficiency to over 80%, while simplifying the traditional labor-intensive process and enabling quick, low-risk sample processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!