A current hot topic in polymer science is the development of electromagnetic wave-absorbing materials with desired properties (i.e., proper impedance matching and strong attenuation capability), but it presents a considerable challenge. In this work, solvothermal, and self-assembled polymerization were employed for the controlled fabrication of a uniform polypyrrole (PPy) aerogel coated on hollow CuS hierarchical microspheres (CuS@PPy). The PPy coating thickness of the heterostructure could be tuned by varying the feeding weight ratios of CuS/pyrrole monomer. The electromagnetic wave absorption properties of the CuS@PPy composites were estimated to be in the frequency range 2⁻18 GHz. The as-prepared Sample B (fabricated by the addition of 35 mg CuS) showed a maximum reflection loss (RL) of -52.85 dB at a thickness of 2.5 mm. Moreover, an ultra-wide effective bandwidth (RL ≤ -10 dB) from 9.78 to 17.80 GHz (8.02 GHz) was achieved. Analysis of the electromagnetic properties demonstrated that the CuS@PPy had a remarkable enhancement compared to pure CuS platelet-based spheres and pure PPy, which can be attributed to the increased relatively complex permittivity and the promoted dielectric loss by the intense interfacial dielectric polarizations. We believe that the as-fabricated CuS@PPy can be a good reference for the fabrication of lightweight and optimal broadband absorbers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401766 | PMC |
http://dx.doi.org/10.3390/polym10111286 | DOI Listing |
J Colloid Interface Sci
December 2024
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:
Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.
View Article and Find Full Text PDFBiomater Adv
December 2024
College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China. Electronic address:
Monotherapy has poor accuracy and is easily restricted by tumor microenvironment (TME). Remodeling components of the TME to activate multimodal cancer therapy with high precision and efficiency is worth exploring. A multifunctional nanoreactor was fabricated by decorating chlorin e6-modified and PEGylated hyaluronic acid bearing diethylenetriamine-conjugated dihydrolipoic acid on the surface of glucose oxidase (GOx)-loaded hollow mesoporous CuS nanoparticles (labeled as GOx@HCuS@HA).
View Article and Find Full Text PDFSmall Methods
December 2024
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
Aqueous zinc-ion batteries (AZIBs) are considered a promising choice for energy storage devices owing to the excellent safety and favorable capacity of the Zn anode. However, the uncontrolled dendrite growth of Zn anode severely constrains the practical applications of AZIBs. Herein, a novel ion enrichment layer of CuS is designed and constructed on the Zn foil surface to achieve dendrite-free Zn anode.
View Article and Find Full Text PDFAsian J Pharm Sci
December 2024
Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
Cervical cancer stands is a formidable malignancy that poses a significant threat to women's health. Calcium overload, a minimally invasive tumor treatment, aims to accumulate an excessive concentration of Ca within mitochondria, triggering apoptosis. Copper sulfide (CuS) represents a photothermal mediator for tumor hyperthermia.
View Article and Find Full Text PDFTalanta
December 2024
College of Materials Science and Technology, Sichuan University, Chengdu, 610065, PR China; The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, PR China. Electronic address:
Constructing hybrid hollow nano-electrocatalysts with various transition metal sulfides (TMSs) is highly desirable for sensitive enzyme-free glucose monitoring, but limited research has been conducted due to the constraints of current demanding synthesis technologies. In this study, we integrated CuS and CoS as hybrid nanocages (h-NCs) by advanced synthetic strategies, including coordinated etching and precipitation (CEP) and template ion reutilization. The resulting CuS/CoS h-NCs induced good synergistic effect in electrocatalytic activities, glucose adsorption, and electrical conductivity, as validated by the density functional theory (DFT) calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!