In order to develop a high-performance thin-film nanocomposite (TFN) nanofiltration (NF) membrane, the functionalized graphene-based nanomaterial (GO-HBE-COOH) was synthesized by combining two-dimensional graphene oxide (GO) with a three-dimensional hyperbranched polymer, which was used as the novel nanofiller and successfully embedded into the polypiperazine-amide (PPA) active layers on polysulfone (PSU) substrates via interfacial polymerization (IP) process. The resultant NF membranes were characterized using ATR-FTIR, SEM, and AFM, while their performance was evaluated in terms of water flux, salt rejection, antifouling ability, and chlorine resistance. The influence of GO-HBE-COOH concentration on the morphologies, properties, and performance of TFN NF membranes was investigated. With the addition of 60 ppm GO-HBE-COOH, the TFN-GHC-60 NF membrane exhibited the optimal water flux without a sacrifice of the salt rejection. It was found that the introduction of GO-HBE-COOH nanosheets favored the formation of a thinner and smoother nanocomposite active layer with an enhanced hydrophilicity and negative charge. As a result, TFN NF membranes demonstrated a superior permeaselectivity, antifouling ability, and chlorine resistance over the conventional PPA thin-film composite (TFC) membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401733 | PMC |
http://dx.doi.org/10.3390/polym10111253 | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Semiconductor Engineering, Hoseo University, Asan 31499, Republic of Korea.
A stacked nanocomposite zinc-tin oxide/single-walled carbon nanotubes (ZTO/SWNTs) active layer was fabricated for thin-film transistors (TFTs) as an alternative to the conventional single-layer structure of mixed ZTO and SWNTs. The stacked nanocomposite of the solution-processed TFTs was prepared using UV/O treatment and multiple annealing steps for each layer. The electrical properties of the stacked device were superior to those of the single-layer TFT.
View Article and Find Full Text PDFNanotechnology
January 2025
Universiti Teknologi PETRONAS, Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, MALAYSIA, Seri Iskandar, Perak, 32610, MALAYSIA.
Most previously reported susceptors for microwave welding are in powder form. In this study, a thin-film susceptor was employed due to its uniform heating rate and ease of handling. Silicon carbide nanowhisker (SiCNW) were incorporated into a poly(methyl methacrylate) (PMMA) matrix to create a nanocomposite thin film, which served as the susceptor.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Shanghai Electronic Chemicals Innovation Institute, East China University of Science and Technology, Shanghai 200237, China.
Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux () of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications.
View Article and Find Full Text PDFJ Biophotonics
December 2024
Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
We report here on the development of tailored plasmonic AgNPs/C:H:N:O plasma polymer nanocomposites for the detection of the pathogenic bacterium Borrelia afzelii, with high selectivity and sensitivity. Silver (Ag) nanoparticles, generated by a gas aggregation source, are incorporated onto a C:H:N:O plasma polymer matrix, which is deposited by magnetron sputtering of a nylon 6.6.
View Article and Find Full Text PDFFood Chem
December 2024
Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan.
Development of a reliable tool to detect hydrogen peroxide (HO) and rutin in food-derived products and bioactive flavonoids is essential for food safety. Nevertheless, food/drug-based real samples are complex matrices that affect the sensor's specificity and sensitivity. For this purpose, we developed a simple electrochemical detection platform using covalent organic framework‑silver nanoparticles (COF-AgNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!