Research on the Methods for the Mass Production of Multi-Scale Organs-On-Chips.

Polymers (Basel)

Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Cantoblanco-Madrid, Spain.

Published: November 2018

The success of labs- and organs-on-chips as transformative technologies in the biomedical arena relies on our capacity of solving some current challenges related to their design, modeling, manufacturability, and usability. Among present needs for the industrial scalability and impact promotion of these bio-devices, their sustainable mass production constitutes a breakthrough for reaching the desired level of repeatability in systematic testing procedures based on labs- and organs-on-chips. The use of adequate biomaterials for cell-culture processes and the achievement of the multi-scale features required, for in vitro modeling the physiological interactions among cells, tissues, and organoids, which prove to be demanding requirements in terms of production. This study presents an innovative synergistic combination of technologies, including: laser stereolithography, laser material processing on micro-scale, electroforming, and micro-injection molding, which enables the rapid creation of multi-scale mold cavities for the industrial production of labs- and organs-on-chips using thermoplastics apt for in vitro testing. The procedure is validated by the design, rapid prototyping, mass production, and preliminary testing with human mesenchymal stem cells of a conceptual multi-organ-on-chip platform, which is conceived for future studies linked to modeling cell-to-cell communication, understanding cell-material interactions, and studying metastatic processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401721PMC
http://dx.doi.org/10.3390/polym10111238DOI Listing

Publication Analysis

Top Keywords

mass production
12
labs- organs-on-chips
12
production
5
methods mass
4
production multi-scale
4
organs-on-chips
4
multi-scale organs-on-chips
4
organs-on-chips success
4
success labs-
4
organs-on-chips transformative
4

Similar Publications

Background: Selective androgen receptor modulators (SARMs) are small-molecule compounds that exert agonist and antagonist effects on androgen receptors in a tissue-specific fashion. Because of their performance-enhancing implications, SARMs are increasingly abused by athletes. To date, SARMs have no Food and Drug Administration approved use, and recent case reports associate the use of SARMs with deleterious effects such as drug-induced liver injury, myocarditis, and tendon rupture.

View Article and Find Full Text PDF

A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg.

View Article and Find Full Text PDF

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by hypersecretion of fibroblast growth factor 23 (FGF23) by typically benign phosphaturic mesenchymal tumors (PMTs). FGF23 excess causes chronic hypophosphatemia through renal phosphate losses and decreased production of 1,25-dihydroxy-vitamin-D. TIO presents with symptoms of chronic hypophosphatemia including fatigue, bone pain, weakness, and fractures.

View Article and Find Full Text PDF

This study aims to evaluate the efficiency and energy release characteristics of different types of coal in pulse detonation engines (PDE) to advance the development of deep coal fluidization detonation technology, achieving more efficient and cleaner coal utilization. Using a custom PDE setup, experiments were conducted with four coal types at mass flow rates from 30 to 120 g/s. High-frequency pressure sensors assessed pressure dynamics and detonation wave propagation, complemented by numerical simulations for accuracy.

View Article and Find Full Text PDF

In the current years, gas-liquid membrane contactors (GLMCs) have been introduced as a promising, versatile and easy-to-operate technology for mitigating the emission of major greenhouse contaminants (i.e., CO and HS) to the ecosystem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!