Effect of Different Types of Electrospun Polyamide 6 Nanofibres on the Mechanical Properties of Carbon Fibre/Epoxy Composites.

Polymers (Basel)

Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain.

Published: October 2018

Delamination and brittle matrix fracture have long since been the biggest problems in fibre-reinforced composites. Recently, the incorporation of electrospun nanofibre veils has been shown to be an effective method for improving the mechanical properties of these composites, without causing process problems and negatively affecting other mechanical properties. Thus, these nanofibres have the potential to be used as thickness-reinforcing materials in composites. This paper investigates the effect of incorporating standalone electrospun nanofibre veils made of two different types of polyamide 6 (PA6) on the mechanical properties of carbon fibre/epoxy composites. The influence of positioning the electrospun veils at different interlaminar positions of the laminate has also been investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290619PMC
http://dx.doi.org/10.3390/polym10111190DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
properties carbon
8
carbon fibre/epoxy
8
fibre/epoxy composites
8
electrospun nanofibre
8
nanofibre veils
8
composites
5
types electrospun
4
electrospun polyamide
4
polyamide nanofibres
4

Similar Publications

Article Synopsis
  • Limited biomechanical research explores how horizontal meniscus tears (HMTs), meniscal repair (MR), and meniscectomy affect knee biomechanics, prompting this systematic review to investigate changes in knee contact mechanics following these conditions.
  • A total of 6 studies were analyzed, revealing that HMTs increase peak contact pressure (PCP) by 14.2% and decrease contact area (CA) by 7.1%; partial meniscectomies (PM) also raised PCP significantly while reducing CA, and complete meniscectomies (CM) resulted in even higher increases in PCP (54.5%).
  • Meniscal repair (MR) showed no significant difference in PCP or CA compared to intact menisci, indicating that it
View Article and Find Full Text PDF

Comparison of mechanical properties and shaping performance of ProGlider and ProTaper ultimate slider.

BMC Oral Health

January 2025

Department of Conservative Dentistry, College of Dentistry, Kyung Hee University, 26-6, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.

Background: This study aims to compare design, phase transformation behavior, and torsional resistance of the ProGlider (PG) and ProTaper ultimate slider (PUS) and to compare the performance of two files in the glide-path preparation of a double-curved artificial canal.

Methods: Scanning electron microscopy, micro-computed tomography, and differential scanning calorimetry were used to characterize the samples. A torsional resistance test was performed to obtain ultimate strength and distortion angle.

View Article and Find Full Text PDF

Study on the preparation and design of chenille/polyester integrated yarns and its acoustic properties.

Sci Rep

January 2025

Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China.

With the rapid development of industrialization and urbanization, the impact of noise on people's health has become an increasingly serious issue, but it is still a challenge for the reducing the noise due to its complex property. Textiles with many loose porous structures have gained much significant attentions, thus chenille yarns with plush fibers on the surface, and polyester monofilament were chosen to fabricate the integrated knitting yarns, and their fundamental and mechanical properties were fully evaluated. The results showed that the diameter and braiding angle of the blended yarns decreased with the increase of pitch, resulting in a linear correlation of R > 0.

View Article and Find Full Text PDF

Triply periodic minimal surface (TPMS) metamaterials show promise for thermal management systems but are challenging to integrate into existing packaging with strict mechanical requirements. Composite TPMS lattices may offer more control over thermal and mechanical properties through material and geometric tuning. Here, we fabricate copper-plated, 3D-printed triply periodic minimal surface primitive lattices and evaluate their suitability for battery thermal management systems.

View Article and Find Full Text PDF

The effects of heat-assisted vat photopolymerization (HVPP) on the physical and mechanical properties of 3D-printed dental resins, including the morphometric stability of 3D-printed crowns, were investigated. A resin tank was designed to maintain the resin at 30, 40, and 50 ℃ during the 3D printing process. Test specimens were fabricated using a commercial dental resin, with untreated resin serving as the control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!