Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, new concepts in textile dyeing technology have been investigated which aim to decrease the use of chemicals and the emission of water. In this work, dyeing of cotton textiles with reactive dyes has been investigated in a silicone non-aqueous dyeing system. Compared with conventional aqueous dyeing, almost 100% of reactive dyes can be adsorbed on cotton textiles without using any salts in non-aqueous dyeing systems, and the fixation of dye is also higher (80%~90% for non-aqueous dyeing vs. 40%~50% for traditional dyeing). The pseudo-second-order kinetic model can best describe the adsorption and equilibrium of reactive dyes in the non-aqueous dyeing systems as well as in the traditional water dyeing system. In the non-aqueous dyeing systems, the adsorption equilibrium of reactive dyes can be reached quickly. Particularly in the siloxane non-aqueous dyeing system, the adsorption equilibrium time of reactive dye is only 5⁻10 min at 25 °C, whereas more time is needed at 60 °C in the water dyeing system. The surface tension of non-aqueous media influences the adsorption rate of dye. The lower the surface tension, the faster the adsorption rate of reactive dye, and the higher the final uptake of dye. As a result, non-aqueous dyeing technology provides an innovative approach to increase dye uptake under a low dyeing temperature, in addition to making large water savings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403686 | PMC |
http://dx.doi.org/10.3390/polym10091030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!