Intumescent Polymer Metal Laminates for Fire Protection.

Polymers (Basel)

Univ.Lille, ENSCL, UMR 8207, UMET, Unité Matériaux et Transformations, F 59 000 Lille, France.

Published: September 2018

Intumescent paints are applied on materials to protect them against fire, but the development of novel chemistries has reached some limits. Recently, the concept of "Polymer Metal Laminates," consisting of alternating thin aluminum foils and thin epoxy resin layers has been proven efficient against fire, due to the delamination between layers during burning. In this paper, both concepts were considered to design "Intumescent Polymer Metal Laminates" (IPML), i.e., successive thin layers of aluminum foils and intumescent coatings. Three different intumescent coatings were selected to prepare ten-plies IPML glued onto steel substrates. The IPMLs were characterized using optical microscopy, and their efficiency towards fire was evaluated using a burn-through test. Thermal profiles obtained were compared to those obtained for a monolayer of intumescent paint. For two of three coatings, the use of IPML revealed a clear improvement at the beginning of the test, with the slopes of the curves being dramatically decreased. Characterizations (expansion measurements, microscopic analyses, in situ temperature, and thermal measurements) were carried out on the different samples. It is suggested that the polymer metal laminates (PML) design, delays the carbonization of the residue. This work highlighted that design is as important as the chemistry of the formulation, to obtain an effective fire barrier.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403655PMC
http://dx.doi.org/10.3390/polym10090995DOI Listing

Publication Analysis

Top Keywords

polymer metal
12
metal laminates
8
metal laminates"
8
aluminum foils
8
intumescent coatings
8
intumescent
5
fire
5
intumescent polymer
4
metal
4
laminates fire
4

Similar Publications

A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS.

View Article and Find Full Text PDF

Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.

View Article and Find Full Text PDF

Spontaneous Formation of Single-Crystalline Spherulites in a Chiral 2D Hybrid Perovskite.

J Am Chem Soc

January 2025

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.

In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.

View Article and Find Full Text PDF

Exposure to mid-energy radiation poses significant health risks, necessitating the development of effective shielding materials. Traditional lead-based shields, while effective, have significant drawbacks including toxicity and environmental concerns. This study investigates the potential of lead-free epoxy resin nanocomposites, incorporating bismuth oxide, nickel oxide, and cerium oxide, for mid-energy radiation protection.

View Article and Find Full Text PDF

Energy crisis and environmental pollution are two central themes of contemporary research towards achieving sustainable development goals (SDGs). Material chemistry is the chief discipline that can resolve glitches in these areas through the appropriate design of chemical compounds with multifunctional properties. In this regard, two stable coordination polymers (CPs) were synthesised in this work using Zn(II) (3d) and Cd(II) (d) metal nodes with 1,4-benzenedicarboxylate () as the bridging ligand and monodentate pyridyl-N coordinated 9-fluoren-2-yl-pyridin-4-ylmethylene-amine (flpy) as the fluorogenic partner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!