A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and in Vitro Cytocompatibility of Segmented Poly(Ester-Urethane)s and Poly(Ester-Urea-Urethane)s for Bone Tissue Engineering. | LitMetric

Synthesis and in Vitro Cytocompatibility of Segmented Poly(Ester-Urethane)s and Poly(Ester-Urea-Urethane)s for Bone Tissue Engineering.

Polymers (Basel)

Departamento de Ingeniería Metalúrgica, Instituto Politécnico Nacional, ESIQIE, UPALM-Zacatenco, Col Lindavista, México City 07738, Mexico.

Published: September 2018

AI Article Synopsis

  • Two series of segmented polyurethanes (PEUs and PEUUs) were created using different chain extenders, leading to variations in their thermal and mechanical properties.
  • The mechanical tests indicated that PEUs exhibited better strain and hardness values compared to PEUUs due to differences in crystallinity and phase segregation.
  • Both polymers demonstrated biodegradability in PBS over 90 days with 20% weight loss, while also showing high cell viability (80%) and good adhesion in in vitro tests with human osteoblasts.

Article Abstract

Two series of segmented polyurethanes were obtained and their mechanical and thermal properties as well as their biodegradability and cytotoxicity were evaluated. The chemical nature of the polyurethanes was varied by using either 1,4 butanediol (poly-ester-urethanes, PEUs) or l-lysine ethyl ester dihydrochloride (poly-ester-urea-urethanes, PEUUs) as chain extenders. Results showed that varying the hard segment influenced the thermal and mechanical properties of the obtained polymers. PEUs showed strain and hardness values of about 10⁻20 MPa and 10⁻65 MPa, respectively. These values were higher than the obtained values for the PEUUs due to the phase segregation and the higher crystallinity observed for the polyester-urethanes (PEUs); phase segregation was also observed and analyzed by XRD and DSC. Moreover, both series of polymers showed hydrolytic degradation when they were submerged in PBS until 90 days with 20% of weight loss. In vitro tests using a Human Osteoblastic cell line (Hob) showed an average of 80% of cell viability and good adhesion for both series of polymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403855PMC
http://dx.doi.org/10.3390/polym10090991DOI Listing

Publication Analysis

Top Keywords

phase segregation
8
series polymers
8
synthesis vitro
4
vitro cytocompatibility
4
cytocompatibility segmented
4
segmented polyester-urethanes
4
polyester-urethanes polyester-urea-urethanes
4
polyester-urea-urethanes bone
4
bone tissue
4
tissue engineering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!