Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Combinatorial drug delivery is a way of advanced cancer treatment that at present represents a challenge for researchers. Here, we report the efficient entrapment of two clinically used single-agent drugs, doxorubicin and sorafenib, against hepatocellular carcinoma. Biocompatible and biodegradable polymeric nanoparticles provide a promising approach for controlled drug release. In this study, doxorubicin and sorafenib with completely different chemical characteristics were simultaneously entrapped by the same polymeric carrier, namely poly(d,l-lactide--glycolide) (PLGA) and polyethylene glycol-poly(d,l-lactide--glycolide) (PEG-PLGA), respectively, using the double emulsion solvent evaporation method. The typical mean diameters of the nanopharmaceuticals were 142 and 177 nm, respectively. The PLGA and PEG-PLGA polymers encapsulated doxorubicin with efficiencies of 52% and 69%, respectively, while these values for sorafenib were 55% and 88%, respectively. Sustained drug delivery under biorelevant conditions was found for doxorubicin, while sorafenib was released quickly from the PLGA-doxorubicin-sorafenib and PEG-PLGA-doxorubicin-sorafenib nanotherapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403728 | PMC |
http://dx.doi.org/10.3390/polym10080895 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!