This work describes the fabrication of antimicrobial multilayered polymeric films containing carvacrol (used as a model essential oil) by co-extrusion and multiplication technique. The microlayering process was utilized to produce films, with up to 65 alternating layers, of carvacrol-containing low-density polyethylene (LDPE) and ethylene vinyl alcohol copolymer (EVOH). Carvacrol was melt compounded with LDPE or loaded into halloysite nanotubes (HNTs) in a pre-compounding step prior film production. The detailed nanostructure and composition (in terms of carvacrol content) of the films were characterized and correlated to their barrier properties, carvacrol release rate, and antibacterial and antifungal activity. The resulting films exhibit high carvacrol content despite the harsh processing conditions (temperature of 200 °C and long processing time), regardless of the number of layers or the presence of HNTs. The multilayered films exhibit superior oxygen transmission rates and carvacrol diffusivity values that are more than two orders of magnitude lower in comparison to single-layered carvacrol-containing films (i.e., LDPE/carvacrol and LDPE/(HNTs/carvacrol)) produced by conventional cast extrusion. The (LDPE/carvacrol)/EVOH and (LDPE/[HNTs/carvacrol])/EVOH films demonstrated excellent antimicrobial efficacy against and in micro-atmosphere assays and against and in cherry tomatoes, used as the food model. The results presented here suggest that sensitive essential oils, such as carvacrol, can be incorporated into plastic polymers constructed of tailored multiple layers, without losing their antimicrobial efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403741PMC
http://dx.doi.org/10.3390/polym10080864DOI Listing

Publication Analysis

Top Keywords

films
8
carvacrol
8
films carvacrol
8
carvacrol content
8
films exhibit
8
antimicrobial efficacy
8
antimicrobial
4
antimicrobial ldpe/evoh
4
ldpe/evoh layered
4
layered films
4

Similar Publications

Effect of Ph on the Physicochemical Properties of a Cassava Peel Starch Biopolymer.

Cell Physiol Biochem

January 2025

Carrera de Agroindustria, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM-MFL, Calceta. 130250, Ecuador.

Background/aims: This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels.

View Article and Find Full Text PDF

Music can evoke powerful emotions in listeners. However, the role that instrumental music (music without any vocal part) plays in conveying extra-musical meaning, above and beyond emotions, is still a debated question. We conducted a study wherein participants (N = 121) listened to twenty 15-second-long excerpts of polyphonic instrumental soundtrack music and reported (i) perceived emotions (e.

View Article and Find Full Text PDF

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Mapping the Energy Carrier Diffusion Tensor in Perovskite Semiconductors.

ACS Nano

January 2025

Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Understanding energy transport in semiconductors is critical for the design of electronic and optoelectronic devices. Semiconductor material properties, such as charge carrier mobility or diffusion length, are commonly measured in bulk crystals and determined using models that describe transport behavior in homogeneous media, where structural boundary effects are minimal. However, most emerging semiconductors exhibit nano- and microscale heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!