By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in the rapid compression process for poly-ethylene-terephthalate (PET), polyether-ether-ketone (PEEK), isotactic polypropylene (iPP), high-density polyethylene (HDPE), and the living polymer sulfur. The experimental results clearly show that crystallization could be inhibited, and some melts were solidified to the full amorphous state for PET, PEEK, and sulfur. Full amorphous PEEK that was 24 mm in diameter and 12 mm in height was prepared, which exceeded the size obtained by the melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K. Since the solidification of melt is realized by changing pressure instead of temperature and is not essentially limited by thermal conductivity, it is a promising way to prepare fully amorphous polymers. In addition, novel properties are also expected in these polymers solidified by the pressure-jump within milliseconds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403784 | PMC |
http://dx.doi.org/10.3390/polym10080847 | DOI Listing |
ACS Nano
January 2025
Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality information about their nanoscale structure. More recently, its four-dimensional modality has emerged as a tool for a comprehensive crystal structure analysis using large data sets of diffraction patterns.
View Article and Find Full Text PDFNano Lett
January 2025
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Phys Chem Chem Phys
December 2024
Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, CZ-166 28 Prague 6, Praha, Czech Republic.
Poor aqueous solubility of crystalline active pharmaceutical ingredients (APIs) restricts their bioavailability. Amorphous solid dispersions with biocompatible polymer excipients offer a solution to overcome this problem, potentially enabling a broader use of many drug candidate molecules. This work addresses various aspects of the design of a suitable combination of an API and a polymer to form such a binary solid dispersion.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066, Seoburo, Jangan-gu, Suwon 440-746, Republic of, Korea.
Sodium metal anodes (SMA), featuring high energy content, low electrochemical potential and easy availability, are a compelling option for sustainable energy storage. However, notorious sodium dendrite and unstable solid-electrolyte interface (SEI) have largely retarded their widespread implantation. Herein, porous amorphous carbon nanofiber embedded with Bi nanoparticles in nanopores (Bi@NC) was rationally designed as a 3D host for SMA.
View Article and Find Full Text PDFSmall
November 2024
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!