The conformational and rheological properties of active filaments/polymers exposed to shear flow are studied analytically. Using the continuous Gaussian semiflexible polymer model extended by the activity, we derive analytical expressions for the dependence of the deformation, orientation, relaxation times, and viscosity on the persistence length, shear rate, and activity. The model yields a Weissenberg-number dependent shear-induced deformation, alignment, and shear thinning behavior, similarly to the passive counterpart. Thereby, the model shows an intimate coupling between activity and shear flow. As a consequence, activity enhances the shear-induced polymer deformation for flexible polymers. For semiflexible polymers/filaments, a nonmonotonic deformation is obtained because of the activity-induced shrinkage at moderate and swelling at large activities. Independent of stiffness, activity-induced swelling facilitates and enhances alignment and shear thinning compared to a passive polymer. In the asymptotic limit of large activities, a polymer length- and stiffness-independent behavior is obtained, with universal shear-rate dependencies for the conformations, dynamics, and rheology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403868 | PMC |
http://dx.doi.org/10.3390/polym10080837 | DOI Listing |
Int J Numer Method Biomed Eng
January 2025
Department of Cardiology, First Medical Center, General Hospital of Chinese people's Liberation Army, Beijing, China.
The intra-aortic balloon pump (IABP) is a widely-used mechanical circulatory support device that enhances hemodynamics in patients with heart conditions. Although the IABP is a common clinical tool, its effectiveness in enhancing outcomes for patients with acute myocardial infarction and cardiogenic shock remains disputed. This study aimed to assess the effectiveness of intra-aortic dual-balloon pump (IADBP) and its impact on aortic hemodynamics compared with an IABP.
View Article and Find Full Text PDFMatrix Biol
January 2025
Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:
Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.
View Article and Find Full Text PDFSoft Matter
January 2025
Politecnico di Milano, 20133 Milano, Italy.
Identical, inelastic spheres crystallize when sheared between two parallel, bumpy planes under a constant load larger than a minimum value. We investigate the effect of the inter-particle friction coefficient of the sheared particles on the flow dynamics and the crystallization process with discrete element simulations. If the imposed load is about the minimum value to observe crystallization in frictionless spheres, adding small friction to the granular assembly results in a shear band adjacent to one of the planes and one crystallized region, where a plug flow is observed.
View Article and Find Full Text PDFSci Rep
January 2025
Dazhu Coal and Electricity Group of Sichuan, Xiaohezui Coal Mine, Dazhou, 6635000, China.
This study investigates the bearing characteristics and damage evolution of regenerative rock masses formed under varying geological conditions through uniaxial loading tests, numerical simulations, and theoretical derivations. Regenerative rock mass samples with different water-cement ratios and cementing materials were prepared, and the mechanical behavior during the loading process was analyzed. The results indicate that the secondary damage process can be divided into three stages: pre-peak, weakening, and friction.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden.
Biofilms constitute one of the most common forms of living matter, playing an increasingly important role in technology, health, and ecology. While it is well established that biofilm growth and morphology are highly dependent on the external flow environment, the precise role of fluid friction has remained elusive. We grew Bacillus subtilis biofilms on flat surfaces of a channel in a laminar flow at wall shear stresses spanning one order of magnitude (τ = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!