Ethylene Polymerization and Copolymerization with Polar Monomers Using Nickel Complexes Bearing Anilinobenzoic Acid Methyl Ester Ligand.

Polymers (Basel)

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China.

Published: July 2018

Neutral nickel complexes containing an anilinobenzoic acid methyl ester ligand are prepared and applied for the ethylene polymerization and copolymerization with polar monomers. The complex containing isopropyl substituent on the aniline ligand conducts ethylene polymerization with high activity and good thermal stability. Most importantly, the catalyst promotes the copolymerization of ethylene and polar monomers with high activity (up to 277 kg·mol·h), affording ester-functionalized semicrystalline polyethylene with reasonable polar monomer content (up to 3.20 mol %).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403595PMC
http://dx.doi.org/10.3390/polym10070754DOI Listing

Publication Analysis

Top Keywords

ethylene polymerization
12
polar monomers
12
polymerization copolymerization
8
copolymerization polar
8
nickel complexes
8
anilinobenzoic acid
8
acid methyl
8
methyl ester
8
ester ligand
8
high activity
8

Similar Publications

Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.

View Article and Find Full Text PDF

L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.

Pharmaceutics

December 2024

Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared.

View Article and Find Full Text PDF

As the demand for sustainable and innovative solutions in food packaging continues to grow, this study endeavors to introduce a comprehensive exploration of novel active materials. Specifically, we focus on characterizing polylactide-poly(ethylene glycol) (PLA/PEG) films filled with olive leaf extract (OLE; ) obtained via solvent evaporation. Examined properties include surface structure, thermal degradation and mechanical attributes, as well as antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!