The thermal conductivity of flake graphite (FG) particulates reinforced high density polyethylene (HDPE) composites was systematically investigated under a special dispersion state of FG particles. The effects of particle size, weight filling ratio and proportion of various sizes were discussed in detail. A special composite (15 wt % 500 μm/10 wt % 200 μm/10 wt % 20 μm/5 wt % 2 μm FG + 60 wt % polyethylene (PE)) with a high thermal conductivity about 2.49 W/(m·K) was produced by combining the synergistic effect of several fillers. The component material size distribution was employed to analyze the effect of particle size. And scanning electron microscope (SEM) was adopted to observe the FG network in the composites. Thermogravimetric analysis (TGA) revealed the good thermal stability of composites. Differential scanning calorimetry (DSC) indicated that all composites own a similar melting temperature. Sample compression experiment indicated that all composites still exhibit high mechanical strength. Consequently, the easy-making flake graphite reinforced polyethylene composites with a high thermal conductivity would have a wide application in the new material field, such as a thermal interface material, a heat exchanger, voltage cable, etc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403869PMC
http://dx.doi.org/10.3390/polym10070693DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
16
high thermal
12
flake graphite
12
conductivity flake
8
graphite reinforced
8
reinforced polyethylene
8
polyethylene composites
8
particle size
8
indicated composites
8
composites
7

Similar Publications

Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.

View Article and Find Full Text PDF

The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.

View Article and Find Full Text PDF

Electrodialysis (ED) has already been applied to recover nickel in galvanizing processes, allowing nickel recovery and the production of a treated effluent with demineralized water quality. However, the growth in ED use is still limited by the production and commercialization of ion-selective membranes, currently limited to a few large companies. Therefore, this paper presents the development of homogeneous cationic and anionic membranes made from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for ED use.

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

TiC provides a promising potential for high-temperature microwave absorbers due to its unique combination of thermal stability, high electrical conductivity, and robust structural integrity. C@TiC/SiO composites were successfully fabricated using a simple blending and cold-pressing method. The effects of C@TiC's absorbent content and temperature on the dielectric and microwave absorption properties of C@TiC/SiO composites were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!