High-molecular weight nylon 66/modified clay (Mclay) nanocomposites with a low apparent viscosity were prepared by in-situ polymerization and post solid-state polycondensation. Thermogravimetric analysis and X-ray diffraction patterns of the Mclay revealed that cetyltrimethyl ammonium bromide successfully inserted into the interlayers of the clay. Scanning electron microscope images of the cross sections showed that the Mclay was well-dispersed in the nylon 66 matrix. The effects of clay on the mechanical, rheological, and thermal properties of the nanocomposites were investigated using an Instron 5969 machine, a capillary rheometer, and a differential scanning calorimeter. The results indicated that the incorporation of a very small amount of Mclay considerably decreased the shear viscosity of the nanocomposites and increased the melt index, acting as a viscosity reducer. More importantly, the mechanical properties and spinnability of the nylon 66/Mclay nanocomposites were not affected by the viscosity reducer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473579 | PMC |
http://dx.doi.org/10.3390/polym11030510 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fuzhou University, Chemistry, 523 Gongye Rd, Gulou, 350000, Fuzhou, CHINA.
Conjugated polymers, represented by polymeric carbon nitrides (PCNs), have risen to prominence as new-generation photocatalysts for overall water splitting (OWS). Despite considerable efforts, achieving highly crystalline PCNs with minimal structural defects remains a great challenge, and it is also difficult to examine the exact impact of complex defect states on OWS process, which largely limits their quantum efficiency. Herein, we devise a 'in-situ salt flux' assisted copolymerization protocol by using nitrogen-rich and nitrogen-deficient monomers to precisely manipulate the structural defects of poly (triazine imide) (PTI) single crystals.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea.
Aqueous two-phase systems (ATPSs) have primarily been developed in the form of emulsions to enhance their utilization in green and biocompatible applications. However, numerous challenges have arisen in forming stable and processable water-in-water (W/W) emulsion systems, as well as in fine-tuning the interconnectivity of their internal structure, which can significantly impact their performance. To effectively address these challenges, we elucidate, for the first time, the root cause of the poor stability of W/W emulsions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Weifang University, School of Chemistry & Chemical Engineering and Environmental Engineering, Dongfeng road 5147, 261061, Weifang, CHINA.
The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.
Flexible perovskite solar cells (FPSCs) are a promising emerging photovoltaic technology, with certified power conversion efficiencies reaching 24.9 %. However, the frequent occurrence of grain fractures and interface delamination raises concerns about their ability to endure the mechanical stresses caused by temperature fluctuations.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China.
SnO₂ is a widely used electron transport layer (ETL) material in perovskite solar cells (PSCs), and its design and optimization are essential for achieving efficient and stable PSCs. In this study, the in situ formation of a chain entanglement gel polymer electrolyte is reported in an aqueous phase, integrated with SnO₂ as the ETL. Based on the self-polymerization of 3-[[2-(methacryloyloxy)ethyl]dimethylammonium]propane-1-sulfonic acid (DAES) in an aqueous environment, combining the catalytic effect of LiCl (as a Lewis acid) with the salting-out effect, and the introduction of polyvinylpyrrolidone (PVP) as the other polymer chain, a chain entanglement gelled SnO (G-SnO) structure is successfully constructed with a wide range of functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!