Use of CeO₂ Nanoparticles to Enhance UV-Shielding of Transparent Regenerated Cellulose Films.

Polymers (Basel)

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.

Published: March 2019

The major challenge in preparing polymer nanocomposites is to prevent the agglomeration of inorganic nanoparticles (NPs). Here, with regenerated cellulose (RC) films as supporting medium, UV-shielding and transparent nanocomposite films with hydrophobicity were fabricated by in situ synthesis of CeO₂ NPs. Facilitated through the interaction between organic and inorganic components revealed by X-ray diffraction (XRD) and Fourier transformation infrared spectroscopy (FTIR) characterization, it was found that CeO₂ NPs were uniformly dispersed in and immobilized by a cellulose matrix. However some agglomeration of CeO₂ NPs occurred at higher precursor concentrations. These results suggest that the morphology and particle size of CeO₂ and the corresponding performance of the resulting films are affected by the porous RC films and the concentrations of Ce(NO₃)₃·6H₂O solutions. The optimized nanocomposite film containing 2.95 wt% CeO₂ NPs had more than 75% light transmittance (550 nm), high UV shielding properties, and a certain hydrophobicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473626PMC
http://dx.doi.org/10.3390/polym11030458DOI Listing

Publication Analysis

Top Keywords

ceo₂ nps
16
uv-shielding transparent
8
regenerated cellulose
8
cellulose films
8
ceo₂
6
films
5
nps
5
ceo₂ nanoparticles
4
nanoparticles enhance
4
enhance uv-shielding
4

Similar Publications

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.

View Article and Find Full Text PDF

Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.

View Article and Find Full Text PDF

T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.

View Article and Find Full Text PDF

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!