Effect of Different Pressures of Supercritical Carbon Dioxide on the Microstructure of PAN Fibers during the Hot-Drawing Process.

Polymers (Basel)

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

Published: March 2019

The hot-drawing process of polyacrylonitrile (PAN) fibers is an important step during the production of PAN-based carbon fibers. In this study, supercritical carbon dioxide (Sc-CO₂) was used as one kind of media for thermal stretching of PAN fibers to study the effect of different pressures of Sc-CO₂ on crystallinity, degree of orientation and mechanical property of PAN fibers during the hot-drawing process. The changes of microstructure and mechanical properties in the PAN fibers were investigated by wide-angle X-ray diffraction, small angle X-ray scattering and monofilament strength analysis. The results showed that as the pressure increased, the crystallinity and degree of orientation of PAN fibers increased. Furthermore, when the pressure was 10 MPa, the crystallinity increased from 69.78% to 79.99%, which was the maximum crystallinity among the different pressures. However, when the pressure was further increased, the crystallinity and degree of orientation of the fibers were reduced. The test results of the mechanical properties were consistent with the trends of crystallinity and degree of orientation, showing that when the pressure was 10 MPa, the tensile strength of the fibers increased from 4.59 cN·dtex to 7.06 cN·dtex and the modulus increased from 101.54 cN·dtex to 129.55 cN·dtex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473231PMC
http://dx.doi.org/10.3390/polym11030403DOI Listing

Publication Analysis

Top Keywords

pan fibers
24
crystallinity degree
16
degree orientation
16
hot-drawing process
12
fibers
9
supercritical carbon
8
carbon dioxide
8
fibers hot-drawing
8
fibers study
8
mechanical properties
8

Similar Publications

Carbon-based nanofibers are critical materials with broad applications in industries such as energy, filtration, and biomedical devices. Polyacrylonitrile (PAN) is a primary precursor for carbon nanofibers, but conventional electrospinning techniques typically operate at low production rates of 0.1-1 mL/h from a single spinneret, limiting scalability.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a radiative cooling textile (PAC@T) inspired by flamingo feathers, using polyacrylonitrile and alumina particles to enhance cooling and comfort.
  • PAC@T achieves high solar reflectance (95%) and mid-infrared emissivity (91.8%), resulting in effective cooling that is 6.1°C cooler than traditional textiles.
  • The textile is made from common materials and offers advantages like durability and energy-free operation, posing significant potential for future industrial applications in personal thermoregulation.
View Article and Find Full Text PDF

Deep learning-based automated tool for diagnosing diabetic peripheral neuropathy.

Digit Health

December 2024

Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, China.

Background: Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, and its early identification is crucial for improving patient outcomes. Corneal confocal microscopy (CCM) can non-invasively detect changes in corneal nerve fibers (CNFs), making it a potential tool for the early diagnosis of DPN. However, the existing CNF analysis methods have certain limitations, highlighting the need to develop a reliable automated analysis tool.

View Article and Find Full Text PDF

The effect of carbon fibers (Cf) and Ni nanoparticles addition on the melting point, microstructure, shear strength, indentation hardness and indentation creep of SnBi/Cu solder joints were explored. Composite solder with various Cf percentages (0, 0.02, 0.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!