By the addition of a carbon-based electromagnetic absorbing agent during the foaming process, a novel electromagnetic absorbent polymethacrylimide (PMI) foam was obtained. The proposed foam exhibits excellent electromagnetic wave-absorbing properties, with absorptivity exceeding 85% at a large frequency range of 4.9⁻18 GHz. However, its poor mechanical properties would limit its application in load-carrying structures. In the present study, a novel enhancement approach is proposed by inserting metallic tubes into pre-perforated holes of PMI foam blocks. The mechanical properties of the tube-enhanced PMI foams were studied experimentally under compressive loading conditions. The elastic modulus, compressive strength, energy absorption per unit volume, and energy absorption per unit mass were increased by 127.9%, 133.8%, 54.2%, and 46.4%, respectively, by the metallic tube filling, and the density increased only by 5.3%. The failure mechanism of the foams was also explored. We found that the weaker interfaces between the foam and the electromagnetic absorbing agent induced crack initiation and subsequent collapses, which destroyed the structural integrity. The excellent mechanical and electromagnetic absorbing properties make the novel structure much more competitive in electromagnetic wave stealth applications, while acting simultaneously as load-carrying structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419214 | PMC |
http://dx.doi.org/10.3390/polym11020372 | DOI Listing |
ACS Nano
December 2024
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, 56124, Italy.
This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.
View Article and Find Full Text PDFSci Rep
December 2024
Mining College, Guizhou University, Guiyang, 550025, China.
Coal gangue (CG) is an industrial solid waste produced by coal mining and separation that is considered to have a significant effect on the soil or water environment when exposed to the air, exacerbating ecological pollution. The comprehensive utilization of CG has always been a difficult problem due to the complex mineralogical characteristics. Producing concrete aggregates with CG is an effective strategy for utilising CG resources synthetically.
View Article and Find Full Text PDFSci Rep
December 2024
School of Resources & Safety Engineering, Central South University, Changsha, 410083, Hunan, China.
To explore the mechanism of water inrush from the mine roof strata, a series of seepage-acoustic emission (SAE) experiments on red sandstone disc samples were carried out. The effects of the height to diameter ratio (H/D) and pore pressure on the mechanical, hydraulic and crack propagation properties of red sandstones were investigated. Test results show that, the peak load of rock samples declines with the decreasing H/D and increasing pore pressure.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Engineering, Norfolk State University, Norfolk, USA.
We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!