Influence of the Soluble⁻Insoluble Ratios of Cyclodextrins Polymers on the Viscoelastic Properties of Injectable Chitosan⁻Based Hydrogels for Biomedical Application.

Polymers (Basel)

Controlled Drug Delivery Systems and Biomaterials, University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), U1008, 59000 Lille, France.

Published: January 2019

AI Article Synopsis

  • Injectable hydrogels made from chitosan and cyclodextrin polymers show promise for biomedical use due to their unique properties.
  • This study examines how different ratios of water-soluble and water-insoluble cyclodextrins affect the formation and characteristics of these hydrogels.
  • The hydrogel with a 3:1.5:1.5 ratio demonstrated the best performance in terms of injectability, structural stability, and cytocompatibility, providing insights for improving future biomedical applications.

Article Abstract

Injectable physical hydrogels provide many advantages for biomedical applications. Polyelectrolyte complexes (PEC) formed between cationic chitosan (CHT) and anionic polymers of cyclodextrin (PCD) render a hydrogel of great interest. Given the difference between water-soluble (PCDs) and water-insoluble PCD (PCDi) in the extension of polymerization, the present study aims to explore their impact on the formation and properties of CHT/PCD hydrogel obtained from the variable ratios of PCDi and PCDs in the formulation. Hydrogels CHT/PCDi/PCDs at weight ratios of 3:0:3, 3:1.5:1.5, and 3:3:0 were elaborated in a double⁻syringe system. The chemical composition, microstructure, viscoelastic properties, injectability, and structural integrity of the hydrogels were investigated. The cytotoxicity of the hydrogel was also evaluated by indirect contact with pre-osteoblast cells. Despite having similar shear⁻thinning and self-healing behaviors, the three hydrogels showed a marked difference in their rheological characteristics, injectability, structural stability, etc., depending on their PCDi and PCDs contents. Among the three, all the best above-mentioned properties, in addition to a high cytocompatibility, were found in the hydrogel 3:1.5:1.5. For the first time, we gained a deeper understanding of the role of the PCDi/PCDs in the injectable hydrogels (CHT/PCDi/PCDs), which could be further fine-tuned to enhance their performance in biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419078PMC
http://dx.doi.org/10.3390/polym11020214DOI Listing

Publication Analysis

Top Keywords

viscoelastic properties
8
biomedical applications
8
pcdi pcds
8
hydrogels cht/pcdi/pcds
8
injectability structural
8
hydrogels
6
influence soluble⁻insoluble
4
soluble⁻insoluble ratios
4
ratios cyclodextrins
4
cyclodextrins polymers
4

Similar Publications

The heart is a dynamic pump whose function is influenced by its mechanical properties. The viscoelastic properties of the heart, i.e.

View Article and Find Full Text PDF

Background: In this study, we aimed to evaluate the viscoelastic properties of the superficial back muscles of adolescent idiopathic scoliosis patients with Lenke Type 1A and 1B curves compared to their healthy peers.

Methods: 20 participants with adolescent idiopathic scoliosis and 20 healthy peers were evaluated. Cobb angle was recorded for scoliosis participants.

View Article and Find Full Text PDF

Pulmonary mucus serves as a crucial protective barrier in the respiratory tract, defending against pathogens and contributing to effective clearance mechanisms. In Muco Obstructive Pulmonary Diseases (MOPD), abnormal rheological properties lead to highly viscous mucus, fostering chronic infections and exacerbations. While prior research has linked mucus viscoelasticity to its mucin content, the variability in MOPD patients implies the involvement of other factors.

View Article and Find Full Text PDF

Introduction: Diabetes mellitus (DM) is a chronic metabolic disorder that increases fragility fracture risk. Conventional DXA-based areal bone mineral density (aBMD) assessments often underestimate this risk. Cortical Backscatter (CortBS) ultrasound, a radiation-free technique, non-invasively analyzes cortical bone's viscoelastic and microstructural properties.

View Article and Find Full Text PDF

Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!