Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organic polymers/inorganic zirconium hydrogen phosphate (ZSPP, ZPS-IPPA, and ZPS-PVPA) functionalized with 3-aminopropyltrimethoxysilane were prepared and used to support chiral Mn (salen) complexes (Jacobsen's catalyst). Different characterization methods demonstrated that the chiral Mn (salen) complexes was successfully supported on the surface of the carrier (ZSPP, ZPS-IPPA, or ZPS-PVPA) through a 3-aminopropyltrimethoxysilane group spacer. The supported catalysts effectively catalyzed epoxidation of styrene with -chloroperbenzoic acid (-CPBA) as an oxidant in the presence of -methylmorpholine -oxide (NMO) as an axial base. These results (%, 53.3⁻63.9) were significantly better than those achieved under a homogeneous counterpart (%, 46.2). Moreover, it is obvious that there was no significant decrease in catalytic activity after the catalyst 3 was recycled four times (%: from 95.0 to 92.6; %: from 64.7 to 60.1). Further recycles of catalyst 3 resulted in poor conversions, although the enantioselectivity obtained was still higher than that of corresponding homogeneous catalyst even after eight times. After the end of the eighth reaction, the solid catalyst was allowed to stand in 2 mol/L of dilute hydrochloric acid overnight, prompting an unexpected discovery that the catalytic activity of the catalyst was recovered again at the 9th and 10th cycles of the catalyst.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419084 | PMC |
http://dx.doi.org/10.3390/polym11020212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!