Materials that are both biodegradable and bio-sourced are becoming serious candidates for substituting traditional petro-sourced plastics that accumulate in natural systems. New biocomposites have been produced by melt extrusion, using bacterial polyester (poly(3-hydroxybutyrate3-hydroxyvalerate)) as a matrix and cellulose particles as fillers. In this study, gas-phase esterified cellulose particles, with palmitoyl chloride, were used to improve filler-matrix compatibility and reduce moisture sensitivity. Structural analysis demonstrated that intrinsic properties of the polymer matrix (crystallinity, and molecular weight) were not more significantly affected by the incorporation of cellulose, either virgin or grafted. Only a little decrease in matrix thermal stability was noticed, this being limited by cellulose grafting. Gas-phase esterification of cellulose improved the filler's dispersion state and filler/matrix interfacial adhesion, as shown by SEM cross-section observations, and limiting the degradation of tensile properties (stress and strain at break). Water vapor permeability, moisture, and liquid water uptake of biocomposites were increased compared to the neat matrix. The increase in thermodynamic parameters was limited in the case of grafted cellulose, principally ascribed to their increased hydrophobicity. However, no significant effect of grafting was noticed regarding diffusion parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418645PMC
http://dx.doi.org/10.3390/polym11020200DOI Listing

Publication Analysis

Top Keywords

cellulose particles
12
gas-phase esterification
8
cellulose
7
mitigating impact
4
impact cellulose
4
particles performance
4
performance biopolyester-based
4
biopolyester-based composites
4
composites gas-phase
4
esterification materials
4

Similar Publications

In order to provide long-term anti-corrosion properties of the coatings on the substrate, a microcapsule self-healing coatings system was designed in this paper. Microcapsules were synthesized with ethyl cellulose and octadecyl amine, which were added to epoxy resin to prepare self-healing coatings. The shape of microcapsules was spherical, the average particle size of microcapsules was about 100-120 μm, and the average thickness of microcapsules was 4.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to present a correlative microscopy-tomography approach in conjunction with machine learning-based image segmentation techniques, with the goal of enabling quantitative structural and compositional elucidation of real-world pharmaceutical tablets.

Methods: Specifically, the approach involves three sequential steps: 1) user-oriented tablet constituent identification and characterization using correlative mosaic field-of-view SEM and energy dispersive X-ray spectroscopy techniques, 2) phase contrast synchrotron X-ray micro-computed tomography (SyncCT) characterization of a large, representative volume of the tablet, and 3) constituent segmentation and quantification of the imaging data through user-guided, iterative supervised machine learning and deep learning.

Results: This approach was implemented on a real-world tablet containing 15% API and multiple common excipients.

View Article and Find Full Text PDF

N-chlorination of urea-formaldehyde resin microspheres for antibacterial regenerated cellulose fibers.

Int J Biol Macromol

January 2025

Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, Qingdao Key Laboratory of Flame-Retardant Textile Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China. Electronic address:

Regenerated cellulose fibers are required for widespread antibacterial applications across various fields. N-halamines have been extensively studied and are regarded as a promising candidate for antibacterial purposes. In this work, we focus on investigating the chlorination performance of urea-formaldehyde resin microspheres (UFRs) and using them as antibacterial additives incorporated into the spinning dope to fabricate antibacterial viscose fibers.

View Article and Find Full Text PDF

Nanocellulose extraction from date palm waste using 1-butyl-3-methylimidazolium hydrogen sulphate.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO BOX 15551, Al Ain, United Arab Emirates. Electronic address:

This study provides insights into nanocellulose production using 1-butyl-3-methylimidazolium hydrogen sulphate ([Bmim]HSO) as a green solvent, utilizing cellulose derived from date palm waste. Critical hydrolysis parameters were optimized through analysis of variance and response surface methodology. The predicted nanocellulose yield (Y) followed a quadric equation represented by Y=55.

View Article and Find Full Text PDF

Probing the Self-Assembly dynamics of cellulose nanocrystals by X-ray photon correlation spectroscopy.

J Colloid Interface Sci

December 2024

Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:

Hypothesis: Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS).

Experiments: Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!