In this work, a side-by-side bicomponent thermoplastic polyurethane/polyimide (TPU/PI) polymer electrolyte prepared with side-by-side electrospinning method is reported for the first time. Symmetrical TPU and PI co-occur on one fiber, and are connected by an interface transition layer formed by the interdiffusion of two solutions. This structure of the as-prepared TPU/PI polymer electrolyte can integrate the advantages of high thermal stable PI and good mechanical strength TPU, and mechanical strength is further increased by those isotropic interface transition layers. Moreover, benefiting from micro-nano pores and the high porosity of the structure, TPU/PI polymer electrolyte presents high electrolyte uptake (665%) and excellent ionic conductivity (5.06 mS·cm) at room temperature. Compared with PE separator, TPU/PI polymer electrolyte exhibited better electrochemical stability, and using it as the electrolyte and separator, the assembled Li/LiMn₂O₄ cell exhibits low inner resistance, stable cyclic and notably high rate performance. Our study indicates that the TPU/PI membrane is a promising polymer electrolyte for high safety lithium-ion batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401802 | PMC |
http://dx.doi.org/10.3390/polym11010185 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China.
The solid-electrolyte interphase (SEI) strongly determines the stability and reversibility of aqueous Zn-ion batteries (AZIBs). In traditional electrolytes, the nonuniform SEI layer induced by severe parasitic reactions, such as the hydrogen evolution reaction (HER), will exacerbate the side reactions on Zn anodes, thus leading to low zinc utilization ratios (ZURs). Herein, we propose to use methoxy ethylamine (MOEA) as a nucleophilic additive, which has a stronger nucleophilic characteristic than water, with the advantage of an abundance of nucleophilic atoms.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA.
ACS Nano
January 2025
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
We present a strategy for enhancing Li conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene--poly(ethylene oxide) (PS--PEO), wherein Li ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (3̅) structures. Compared with TFSI anions in Li salts, smaller anions (PF and BF) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable 3̅ structures. The 3̅ structures formed in PS--PEOs doped with LiBF at = 0.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).
View Article and Find Full Text PDFACS Macro Lett
January 2025
Materials Department, University of California, Santa Barbara, California 93106, United States.
Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im) more efficiently solvates lithium salts and plasticizes the polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!