Due to the superior performances of nanosilica particles, this research has been designed to study their effects on the mechanical and trigological properties of a PVA/PAM polymer composite by a molecular dynamics simulation method. To realize the research objectives mentioned above, the molecular models of amorphous cells and sandwiched friction models for pure polyvinyl alcohol (PVA)/polyacrylamide (PAM) (component weight ratio is 1:1) and PVA/PAM/nanosilica (component weight ratio is 5.75:5.75:1) polymer composites were constructed and simulated, respectively. The simulation results of the mechanical properties show increases about 31.6% in the bulk modulus, 53.1% in the shear modulus, and 50.1% in the Young's modulus by incorporating a nanosilica particle into a pure PVA/PAM polymer composite. Meanwhile, the changes in Cauchy pressure, B/G ratio, and Poisson's ratio values indicate that incorporating a nanosilica particle into pure PVA/PAM weakened the ductility of the composite. Incorporating a nanosilica particle into a pure PVA/PAM composite also showed a decrease about 28.2% in the abrasion rates and relative concentration distributions of polymer molecules in the final friction models. Additionally, the binding energy and the pair correlation functions between a nanosilica particle and the polymer chains in a cubic cell demonstrate that incorporating nanosilica into PVA/PAM polymer composites improves the internal binding strength between different components through the forming hydrogen bonds. As a result, the mechanical and tribological properties of PVA/PAM polymer composites can be enhanced by incorporating nanosilica particles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402222 | PMC |
http://dx.doi.org/10.3390/polym11010076 | DOI Listing |
Sci Rep
January 2025
School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, 600127, India.
The carbon footprint associated with cement production, coupled with depletion of natural resources and climate change, underscores the need for sustainable alternatives. This study explores the effect of metakaolin (MK) and nano-silica (NS) on concrete's engineering performance and environmental impact. Initially, compressive, tensile, and flexural strength tests, along with durability assessments like water absorption, sorptivity, rapid chloride permeability, and resistance to acid and sulphate attacks, were conducted.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Civil Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
This study introduces an innovative approach to enhancing recycled aggregate concrete (RAC) by incorporating nanosilica (NS) and natural fibers (NF), specifically sisal fiber (SF) and palm fiber (PF). This novel combination aims to overcome the inherent limitations of RAC, such as reduced strength and durability, while promoting sustainability in construction. The research focuses on evaluating the mechanical properties of RAC, including compressive and flexural strengths, through the integration of NS and NF.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Department of Conservative Dentistry, Faculty of Dentistry, Mansoura University, Algomhoria Street, P.O. Box 35516, Mansoura, Aldakhlia, Egypt.
Background: This study evaluated the effect of nano-silica (NS) incorporation with resin infiltrant on water sorption and solubility of resin infiltrant, mineral density of demineralized enamel, and resin tags penetration.
Methods: NS (Sigma-Aldrich, St Louis, Missouri, USA) was added into the resin infiltrant (ICON, DMG, Hamburg, Germany) at two concentrations by weight. The tested groups were: ICON (control), ICON + 0.
Polymers (Basel)
November 2024
Libyan Centre for Engineering Research and Information Technology, Bani Walid 00218, Libya.
The influence of Acrylate Styrene Acrylonitrile (ASA) and ASA/nanosilica (ASA/Si) additives was investigated by using a dynamic shear rheometer (DSR). Firstly, an ASA polymer was blended with the virgin asphalt binder at two different concentrations (3% ASA and 5% ASA). After observing that 5% ASA was the optimum concentration for modification, nanosilica particles were further incorporated into the 5% ASA-modified asphalt binder with two different percentages (5% ASA 3%Si; 5% ASA 5%Si).
View Article and Find Full Text PDFSci Rep
November 2024
Department of Civil Engineering, National Research Centre, Cairo, Egypt.
Lightweight concrete, particularly polystyrene concrete, has been extensively utilized in civil engineering for decades. The incorporation of waste expanded polystyrene (EPS) as a filler material in the production of lightweight concrete presents significant advantages from a circular economy perspective. Prior research indicates that increasing the proportion of lightweight aggregates, such as EPS, typically results in reductions in strength and bulk density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!