This paper presents fabric-based soft robotic modules with primitive morphologies, which are analogous to basic geometrical polygons-trilateral and quadrilateral. The two modules are the inflatable beam (IB) and fabric-based rotary actuator (FRA). The FRA module is designed with origami-inspired V-shaped pleats, which creates a trilateral outline. Upon pressurization, the pleats unfold, which enables propagation of angular displacement of the FRA module. This allows the FRA module to be implemented as a mobility unit in the larger assembly of pneumatic structures. In the following, we examine various ways by which FRA modules can be connected to IB modules. We studied how different ranges of motion can be achieved by varying the design of the rotary joint of the assemblies. Using a state transition-based position control system, movement of the assembled modules could be controlled by regulating the pneumatic pressurization of the FRA module at the joint. These basic modules allow us to build different types of pneumatic structures. In this paper, using IB and FRA modules of various dimensions, we constructed a soft robotic limb with an end effector, which can be attached to wheelchairs to provide assistive grasping functions for users with disabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523483 | PMC |
http://dx.doi.org/10.3390/mi10040236 | DOI Listing |
Sensors (Basel)
August 2024
Institute of Marine Sustainable Development, Liaoning Normal University, Dalian 116029, China.
Accurately extracting large-scale offshore floating raft aquaculture (FRA) areas is crucial for supporting scientific planning and precise aquaculture management. While remote sensing technology offers advantages such as wide coverage, rapid imaging, and multispectral capabilities for FRA monitoring, the current methods face challenges in terms of establishing spatial-spectral correlations and extracting multiscale features, thereby limiting their accuracy. To address these issues, we propose an innovative multiscale spatial-spectral fusion network (MSSFNet) designed specifically for extracting offshore FRA areas from multispectral remote sensing imagery.
View Article and Find Full Text PDFBMC Plant Biol
May 2021
Centro de Genómica - Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113, Valencia, Spain.
Background: Abscission is an active, organized, and highly coordinated cell separation process enabling the detachment of aerial organs through the modification of cell-to-cell adhesion and breakdown of cell walls at specific sites on the plant body known as abscission zones. In Arabidopsis thaliana, abscission of floral organs and cauline leaves is regulated by the interaction of the hormonal peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), a pair of redundant receptor-like protein kinases, HAESA (HAE) and HAESA-LIKE2 (HSL2), and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors. However, the functionality of this abscission signaling module has not yet been demonstrated in other plant species.
View Article and Find Full Text PDFSci Rep
February 2020
Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
Previous studies have shown that face-specific recognition ability (FRA) is heritable; however, the neural basis of this heritability is unclear. Candidate gene studies have suggested that the catechol-O-methyltransferase (COMT) rs4680 polymorphism is related to face perception. Here, using a partial least squares (PLS) method, we examined the multivariate association between 12 genotypes of 4 COMT polymorphisms (rs6269-rs4633-rs4818-rs4680) and multimodal MRI phenotypes in the human fusiform face area (FFA), which selectively responds to face stimuli, in 338 Han Chinese adults (mean age 20.
View Article and Find Full Text PDFBMC Plant Biol
January 2020
Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain.
Background: IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce.
View Article and Find Full Text PDFMicromachines (Basel)
April 2019
Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
This paper presents fabric-based soft robotic modules with primitive morphologies, which are analogous to basic geometrical polygons-trilateral and quadrilateral. The two modules are the inflatable beam (IB) and fabric-based rotary actuator (FRA). The FRA module is designed with origami-inspired V-shaped pleats, which creates a trilateral outline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!