A highly selective amperometric biosensor array for the simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate and pyruvate.

Bioelectrochemistry

Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo str., Kyiv 03148, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv 01003, Ukraine.

Published: August 2019

The work was aimed at the development of a biosensor array for the simultaneous determination of six solutes (glutamate, glucose, choline, acetylcholine, lactate, and pyruvate) in aqueous solutions. Enzymes selective for these substrates were immobilized on the surface of amperometric platinum disc electrodes and served as bioselective elements of a biosensor array. Direct enzymatic analysis by the developed biosensors provided high sensitivity to the tested substrates (limits of detection were 1-5 μM). The linear ranges of the biosensors were from 0.001-0.01 mM to 0.2-2.5 mM. The influence of solution pH, ionic strength and buffer capacity on the biosensor responses was investigated; the conditions for simultaneous operation of all the bioselective elements were optimized. The absence of any cross-influence of the substrates of enzymatic systems used was shown as well as a high selectivity of the biosensors and the absence of any impact of interfering substances (ascorbic acid, dopamine, cysteine, paracetamol). The developed biosensor array had good response reproducibility and storage stability. The array is suitable for rapid (0.5-1 min) and simple simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate, and pyruvate in aqueous (biological) samples; furthermore, the creation of a single chip with six sensitive elements is possible as well as the addition of other biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2019.03.010DOI Listing

Publication Analysis

Top Keywords

biosensor array
16
simultaneous determination
12
glutamate glucose
12
glucose choline
12
choline acetylcholine
12
acetylcholine lactate
12
lactate pyruvate
12
array simultaneous
8
determination glutamate
8
pyruvate aqueous
8

Similar Publications

This study has developed a pressure sensor array based on four functionalized DNA-nanoenzymes with catalase-like activity for multiple detections of foodborne pathogens through a portable pressure manometer. Benefiting from functionalization of 4-mercaptophenylboronic acid and β-mercaptoethylamine, the diversity of nonspecific interactions between four DNA-nanoenzymes and each of the nine bacteria leads to differences in pressure response patterns by catalyzing HO to generate exclusive "fingerprints". As effective statistical tools for processing multivariate data, principal component analysis and hierarchical clustering analysis are employed to identify nine foodborne pathogens by analyzing pressure response patterns.

View Article and Find Full Text PDF

Compared with previous decades, healthcare has emerged as a key global concern in light of the recurrent outbreak of pandemics. The initial stage in the provision of healthcare involves the process of diagnosis. Countries worldwide advocate for healthcare research due to its efficacy and capacity to assist diverse populations.

View Article and Find Full Text PDF

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Exosomes have emerged as a powerful biomarker for early cancer diagnosis, however, accurately detecting cancer-derived exosomes in biofluids remains a crucial challenge. In this study, we present a novel label-free electrochemical biosensor utilizing titanium dioxide nanotube array films (TiONTAs) for the sensitive detection of exosomes in complex biological samples. This innovative biosensor takes advantage of the excellent electrochemical properties of TiONTAs and their specific interactions with the phosphate groups of exosomes.

View Article and Find Full Text PDF

Despite the various benefits of chlorpromazine, its misuse and overdose may lead to severe side effects, therefore, creating a user-friendly point-of-care device for monitoring the levels of chlorpromazine drug to manage the potential side effects and ensure the effective and safe use of the medication is highly desired. In this report, we have demonstrated a simple and scalable manufacturing process for the development of a 3D-printed conducting microneedle array-based electrochemical point-of-care device for the minimally invasive sensing of chlorpromazine. We used an inkjet printer to print the carbon and silver ink onto a customized 3D-printed ultrasharp microneedle array for the preparation of counter, working, and reference electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!