Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Evidence suggests that airway hyperresponsiveness (AHR) is a characteristic feature of asthma. Epidemiological studies have confirmed that the severity of asthma is greater in women, suggesting a critical role of female sex steroid hormones (especially estrogen). Very few studies have examined the role of sex steroid hormones in asthma, and the sequence of events that occur through differential activation of estrogen receptors (ERs) remains to be determined in asthmatic airways. Our recent findings indicated that ERβ had increased expression in asthmatic airway smooth muscle (ASM), and that its activation by an ERβ-specific agonist downregulated airway remodeling. In this study, we translated the findings to a murine asthma model and examined the differential role of ER activation in modulating lung mechanics. C57BL/6J male, female, and ovariectomized mice were exposed to mixed allergen (MA) and subcutaneously implanted with sustained-release pellets of placebo, an ERα agonist (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [PPT]), and/or an ERβ agonist (WAY-200070). We then evaluated the effects of these treatments on airway mechanics, biochemical, molecular, and histological parameters. Mice exposed to MA showed a significant increase in airway resistance, elastance, and tissue damping, and a decrease in compliance; pronounced effects were observed in females. Compared with PPT, WAY treatment significantly reversed the MA-induced changes. The increased mRNA/protein expression of ERα, ERβ, and remodeling genes observed in MA-treated mice was significantly reversed in WAY-treated mice. This novel study indicates that activation of ERβ signaling downregulates AHR and airway remodeling, and is a promising target in the development of treatments for asthma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775953 | PMC |
http://dx.doi.org/10.1165/rcmb.2018-0321OC | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!